Harnessing multi-resolution and multi-scale attention for underwater image restoration

被引:0
|
作者
Pramanick, Alik [1 ]
Sur, Arijit [1 ]
Saradhi, V. Vijaya [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Comp Sci & Engn, Gauhati, India
来源
关键词
Underwater image enhancement; Super-resolution; Multi-scale; Multi-resolution; Channel-specific loss; ENHANCEMENT; SUPERRESOLUTION;
D O I
10.1007/s00371-025-03866-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Underwater imagery is often compromised by factors such as color distortion and low contrast, posing challenges for high-level vision tasks. Recent underwater image restoration methods either analyze the input image at full resolution, resulting in spatial richness but contextual weakness, or progressively from high to low resolution, yielding reliable semantic information but reduced spatial accuracy. Here, we propose a lightweight multi-stage network called Lit-Net that focuses on multi-resolution and multi-scale image analysis for restoring underwater images while retaining original resolution during the first stage, refining features in the second, and focusing on reconstruction in the final stage. Our novel encoder block utilizes parallel 1x1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\times 1$$\end{document} convolution layers to capture local information and speed up operations. Further, we incorporate a modified weighted color channel-specific l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document} loss (cl1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$cl_1$$\end{document}) function to recover color and detail information. Extensive experimentations on publicly available datasets suggest our model's superiority over recent state-of-the-art methods, with significant improvement in qualitative and quantitative measures, such as 29.477 dB PSNR (1.92%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.92\%$$\end{document} improvement) and 0.851 SSIM (2.87%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.87\%$$\end{document} improvement) on the EUVP dataset. The contributions of Lit-Net offer a more robust approach to underwater image enhancement and super-resolution, which is of considerable importance for underwater autonomous vehicles and surveillance. The code is available at: https://github.com/Alik033/Lit-Net.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Multi-scale convolution underwater image restoration network
    Zhijie Tang
    Jianda Li
    Jingke Huang
    Zhanhua Wang
    Zhihang Luo
    Machine Vision and Applications, 2022, 33
  • [2] Multi-scale adversarial network for underwater image restoration
    Lu, Jingyu
    Li, Na
    Zhang, Shaoyong
    Yu, Zhibin
    Zheng, Haiyong
    Zheng, Bing
    OPTICS AND LASER TECHNOLOGY, 2019, 110 : 105 - 113
  • [3] Multi-scale convolution underwater image restoration network
    Tang, Zhijie
    Li, Jianda
    Huang, Jingke
    Wang, Zhanhua
    Luo, Zhihang
    MACHINE VISION AND APPLICATIONS, 2022, 33 (06)
  • [4] Multi-scale Attention Aided Multi-Resolution Network for Human Pose Estimation
    Selvam, Srinika
    Mishra, Deepak
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2019, PT I, 2019, 11941 : 461 - 472
  • [5] Multi-resolution depth image restoration
    Yue Zhang
    Zhenfang Liu
    Min Huang
    Qibing Zhu
    Bao Yang
    Machine Vision and Applications, 2021, 32
  • [6] Multi-resolution depth image restoration
    Zhang, Yue
    Liu, Zhenfang
    Huang, Min
    Zhu, Qibing
    Yang, Bao
    MACHINE VISION AND APPLICATIONS, 2021, 32 (03)
  • [7] Factorized multi-scale multi-resolution residual network for single image deraining
    Sujit, Shivakanth
    Deivalakshmi, S.
    Ko, Seok-Bum
    APPLIED INTELLIGENCE, 2022, 52 (07) : 7582 - 7598
  • [8] Factorized multi-scale multi-resolution residual network for single image deraining
    Shivakanth Sujit
    Seok-Bum Deivalakshmi S
    Applied Intelligence, 2022, 52 : 7582 - 7598
  • [9] Multi-scale cascaded attention network for underwater image enhancement
    Zhao, Gaoli
    Wu, Yuheng
    Zhou, Ling
    Zhao, Wenyi
    Zhang, Weidong
    FRONTIERS IN MARINE SCIENCE, 2025, 12
  • [10] Multi-scale Attention Conditional GAN for Underwater Image Enhancement
    Li, Yiming
    Li, Fei
    Li, Zhenbo
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT I, 2024, 14495 : 463 - 475