Harnessing multi-resolution and multi-scale attention for underwater image restoration

被引:0
|
作者
Pramanick, Alik [1 ]
Sur, Arijit [1 ]
Saradhi, V. Vijaya [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Comp Sci & Engn, Gauhati, India
来源
关键词
Underwater image enhancement; Super-resolution; Multi-scale; Multi-resolution; Channel-specific loss; ENHANCEMENT; SUPERRESOLUTION;
D O I
10.1007/s00371-025-03866-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Underwater imagery is often compromised by factors such as color distortion and low contrast, posing challenges for high-level vision tasks. Recent underwater image restoration methods either analyze the input image at full resolution, resulting in spatial richness but contextual weakness, or progressively from high to low resolution, yielding reliable semantic information but reduced spatial accuracy. Here, we propose a lightweight multi-stage network called Lit-Net that focuses on multi-resolution and multi-scale image analysis for restoring underwater images while retaining original resolution during the first stage, refining features in the second, and focusing on reconstruction in the final stage. Our novel encoder block utilizes parallel 1x1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\times 1$$\end{document} convolution layers to capture local information and speed up operations. Further, we incorporate a modified weighted color channel-specific l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document} loss (cl1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$cl_1$$\end{document}) function to recover color and detail information. Extensive experimentations on publicly available datasets suggest our model's superiority over recent state-of-the-art methods, with significant improvement in qualitative and quantitative measures, such as 29.477 dB PSNR (1.92%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.92\%$$\end{document} improvement) and 0.851 SSIM (2.87%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.87\%$$\end{document} improvement) on the EUVP dataset. The contributions of Lit-Net offer a more robust approach to underwater image enhancement and super-resolution, which is of considerable importance for underwater autonomous vehicles and surveillance. The code is available at: https://github.com/Alik033/Lit-Net.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Multi-resolution multi-scale topology optimization - a new paradigm
    Kim, YY
    Yoon, GH
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2000, 37 (39) : 5529 - 5559
  • [22] Underwater acoustic image multi-resolution fusion research
    Wang, Da
    Bian, Hongyu
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2015, 40 (01): : 77 - 82
  • [23] Integrating multi-scale attention network with deep image prior for single image restoration
    Cynthia Devi Arumugam
    Balaji Banothu
    International Journal of Information Technology, 2025, 17 (1) : 555 - 565
  • [24] Incorporating Triple Attention and Multi-scale Pyramid Network for Underwater Image Enhancement
    Sun, Kaichuan
    Tian, Yubo
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2023, 20 (03) : 387 - 397
  • [25] Msap: multi-scale attention probabilistic network for underwater image enhancement network
    Chang, Baocai
    Li, Jinjiang
    Wang, Haiyang
    Li, Mengjun
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 653 - 661
  • [26] TBNet: Stereo Image Super-Resolution with Multi-Scale Attention
    Zhu, Jiyang
    Han, Xue
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2023, 32 (18)
  • [27] Image super-resolution reconstruction with multi-scale attention fusion
    Chen, Chun-yi
    Wu, Xin-yi
    Hu, Xiao-juan
    Yu, Hai-yang
    CHINESE OPTICS, 2023, 16 (05) : 1034 - 1044
  • [28] Generative adversarial networks with multi-scale and attention mechanisms for underwater image enhancement
    Wang, Ziyang
    Zhao, Liquan
    Zhong, Tie
    Jia, Yanfei
    Cui, Ying
    FRONTIERS IN MARINE SCIENCE, 2023, 10
  • [29] Seismic Signal Analysis using Multi-Scale/Multi-Resolution Transformations
    Thomas, Millicent
    Raquepas, Joseph
    Lutz, Adam
    Ezekiel, Soundararajan
    2016 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2016,
  • [30] Underwater Image Enhancement Based on Multi-Scale Feature Fusion and Attention Network
    Liu Y.
    Liu M.
    Lin S.
    Tao Z.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (05): : 685 - 695