SIMEX estimation for quantile regression model with measurement error

被引:0
|
作者
Yang, Yiping [1 ]
Zhao, Peixin [2 ]
Wu, Dongsheng [2 ]
机构
[1] Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing Key Lab Social Econ & Appl Stat, Chongqing, Peoples R China
[2] Chongqing Technol Business Univ, Sch Math & Stat, Chongqing, Peoples R China
关键词
Quantile regression; Measurement error; Simulation-extrapolation; Correction for attenuation; PARAMETER;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The quantile regression model with measurement error is considered. To deal with measurement error, we extend the simulation-extrapolation (SIMEX) method to the case of quantile regressions in the presence of covariate measurement error. The proposed SIMEX estimation corrects the bias caused by the measurement error, and not requires the equal distribution assumption of the regression error and measurement error. The asymptotic distribution of the pro-posed estimator is derived. The finite sample performance of the proposed method is investigated by a simulation study. A real dataset from the Framingham Heart Study is analyzed to illustrate the proposed method.
引用
收藏
页码:545 / 552
页数:8
相关论文
共 50 条
  • [31] Semiparametric regression for measurement error model with heteroscedastic error
    Li, Mengyan
    Ma, Yanyuan
    Li, Runze
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 171 : 320 - 338
  • [32] Estimation of additive quantile regression
    Dette, Holger
    Scheder, Regine
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2011, 63 (02) : 245 - 265
  • [33] Corrected-loss estimation for quantile regression with covariate measurement errors
    Wang, Huixia Judy
    Stefanski, Leonard A.
    Zhu, Zhongyi
    BIOMETRIKA, 2012, 99 (02) : 405 - 421
  • [34] Estimation of additive quantile regression
    Holger Dette
    Regine Scheder
    Annals of the Institute of Statistical Mathematics, 2011, 63 : 245 - 265
  • [35] Symmetric regression quantile and its application to robust estimation for the nonlinear regression model
    Chen, LA
    Tran, LT
    Lin, LC
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 126 (02) : 423 - 440
  • [36] An implementation for regression quantile estimation
    Yee, TW
    COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 3 - 14
  • [37] Randomized quantile regression estimation for heteroskedastic non parametric model
    Xiong, Wei
    Tian, Maozai
    Tang, Man-Lai
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (10) : 5147 - 5179
  • [38] A SINGLE-INDEX QUANTILE REGRESSION MODEL AND ITS ESTIMATION
    Kong, Efang
    Xia, Yingcun
    ECONOMETRIC THEORY, 2012, 28 (04) : 730 - 768
  • [39] Efficient semiparametric estimation of a partially linear quantile regression model
    Lee, S
    ECONOMETRIC THEORY, 2003, 19 (01) : 1 - 31
  • [40] Study on Rice Yield Estimation Model Based on Quantile Regression
    Su Zhong-bin
    Yan Yu-guang
    Jia Yin-jiang
    Sun Hong-min
    Dong Shou-tian
    Cao Yu-ying
    Journal of Northeast Agricultural University(English Edition), 2020, 27 (02) : 136 - 143