Explainable machine learning radiomics model for Primary Progressive Aphasia classification

被引:0
|
作者
Tafuri, Benedetta [1 ,2 ]
De Blasi, Roberto [2 ]
Nigro, Salvatore [2 ]
Logroscino, Giancarlo [1 ,2 ]
机构
[1] Univ Bari Aldo Moro, Dept Translat Biomed & Neurosci DiBraiN, Bari, Italy
[2] Univ Bari Aldo Moro, Ctr Neurodegenerat Dis & Aging Brain, Pia Fdn Card G Panico, Tricase, Italy
基金
美国国家卫生研究院;
关键词
Primary Progressive Aphasia; MRI; machine learning (ML); radiomics; explainability; SYSTEM; MRI; SEGMENTATION; DISRUPTION; NONFLUENT; DEMENTIA; SUBTYPES;
D O I
10.3389/fnsys.2024.1324437
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Introduction Primary Progressive Aphasia (PPA) is a neurodegenerative disease characterized by linguistic impairment. The two main clinical subtypes are semantic (svPPA) and non-fluent/agrammatic (nfvPPA) variants. Diagnosing and classifying PPA patients represents a complex challenge that requires the integration of multimodal information, including clinical, biological, and radiological features. Structural neuroimaging can play a crucial role in aiding the differential diagnosis of PPA and constructing diagnostic support systems.Methods In this study, we conducted a white matter texture analysis on T1-weighted images, including 56 patients with PPA (31 svPPA and 25 nfvPPA), and 53 age- and sex-matched controls. We trained a tree-based algorithm over combined clinical/radiomics measures and used Shapley Additive Explanations (SHAP) model to extract the greater impactful measures in distinguishing svPPA and nfvPPA patients from controls and each other.Results Radiomics-integrated classification models demonstrated an accuracy of 95% in distinguishing svPPA patients from controls and of 93.7% in distinguishing svPPA from nfvPPA. An accuracy of 93.7% was observed in differentiating nfvPPA patients from controls. Moreover, Shapley values showed the strong involvement of the white matter near left entorhinal cortex in patients classification models.Discussion Our study provides new evidence for the usefulness of radiomics features in classifying patients with svPPA and nfvPPA, demonstrating the effectiveness of an explainable machine learning approach in extracting the most impactful features for assessing PPA.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Effect of Feature Discretization on Classification Performance of Explainable Scoring-Based Machine Learning Model
    Pajor, Arkadiusz
    Zolnierek, Jakub
    Sniezynski, Bartlomiej
    Sitek, Arkadiusz
    [J]. COMPUTATIONAL SCIENCE - ICCS 2022, PT III, 2022, 13352 : 92 - 105
  • [42] Familial primary progressive aphasia
    Krefft, TA
    Graff-Radford, NR
    Dickson, DW
    Baker, M
    Castellani, RJ
    [J]. ALZHEIMER DISEASE & ASSOCIATED DISORDERS, 2003, 17 (02): : 106 - 112
  • [43] Primary progressive aphasia with parkinsonism
    Doherty, Karen M.
    Rohrer, Jonathan D.
    Lees, Andrew J.
    Holton, Janice L.
    Warren, Jason
    [J]. MOVEMENT DISORDERS, 2013, 28 (06) : 741 - 746
  • [44] Swallowing in primary progressive aphasia
    Correia Marin, Sheilla de Medeiros
    Ferreira Bertolucci, Paulo Henrique
    Marin, Luis Fabiano
    de Oliveira, Fabricio Ferreira
    Wajman, Jose Roberto
    Bahia, Valeria Santoro
    Mansur, Leticia Lessa
    [J]. NEUROREHABILITATION, 2016, 38 (01) : 85 - 92
  • [45] Machine learning and radiomics for segmentation and classification of adnexal masses on ultrasound
    Barcroft, Jennifer F.
    Linton-Reid, Kristofer
    Landolfo, Chiara
    Al-Memar, Maya
    Parker, Nina
    Kyriacou, Chris
    Munaretto, Maria
    Fantauzzi, Martina
    Cooper, Nina
    Yazbek, Joseph
    Bharwani, Nishat
    Lee, Sa Ra
    Kim, Ju Hee
    Timmerman, Dirk
    Posma, Joram
    Savelli, Luca
    Saso, Srdjan
    Aboagye, Eric O.
    Bourne, Tom
    [J]. NPJ PRECISION ONCOLOGY, 2024, 8 (01)
  • [46] Hesitations in Primary Progressive Aphasia
    Baque, Lorraine
    Machuca, Maria Jesus
    [J]. LANGUAGES, 2023, 8 (01)
  • [47] An update on primary progressive aphasia
    Rogalski, Emily
    Mesulam, Marsel
    [J]. CURRENT NEUROLOGY AND NEUROSCIENCE REPORTS, 2007, 7 (05) : 388 - 392
  • [48] Treatment of Primary Progressive Aphasia
    Tippett, Donna C.
    Hillis, Argye E.
    Tsapkini, Kyrana
    [J]. CURRENT TREATMENT OPTIONS IN NEUROLOGY, 2015, 17 (08)
  • [49] Imaging in primary progressive aphasia
    K. Abe
    H. Ukita
    T. Yanagihara
    [J]. Neuroradiology, 1997, 39 : 556 - 559
  • [50] Radiomics for classification of bone mineral loss: A machine learning study
    Rastegar, S.
    Vaziri, M.
    Qasempour, Y.
    Akhash, M. R.
    Abdalvand, N.
    Shiri, I
    Abdollahi, H.
    Zaidi, H.
    [J]. DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2020, 101 (09) : 599 - 610