Machine learning and radiomics for segmentation and classification of adnexal masses on ultrasound

被引:2
|
作者
Barcroft, Jennifer F. [1 ,2 ]
Linton-Reid, Kristofer [3 ]
Landolfo, Chiara [2 ]
Al-Memar, Maya [1 ,2 ]
Parker, Nina [1 ,2 ]
Kyriacou, Chris [1 ,2 ]
Munaretto, Maria [4 ]
Fantauzzi, Martina [5 ]
Cooper, Nina [1 ,2 ]
Yazbek, Joseph [2 ]
Bharwani, Nishat [6 ]
Lee, Sa Ra [7 ]
Kim, Ju Hee [7 ]
Timmerman, Dirk [1 ,8 ,9 ]
Posma, Joram [1 ]
Savelli, Luca [4 ]
Saso, Srdjan [2 ,3 ]
Aboagye, Eric O. [3 ]
Bourne, Tom [1 ,2 ,9 ]
机构
[1] Imperial Coll London, Dept Metab Digest & Reprod, London, England
[2] Imperial Coll Healthcare NHS Trust, Dept Obstet & Gynaecol, London, England
[3] Imperial Coll London, Dept Surg & Canc, London, England
[4] Osped Morgagni Pierantoni, Dept Obstet & Gynaecol, Forli, Italy
[5] Univ Milano Bicocca, Dept Med & Surg, Milan, Italy
[6] Imperial Coll Healthcare NHS Trust, Dept Radiol, London, England
[7] Asan Med Ctr, Dept Obstet & Gynaecol, Seoul, South Korea
[8] Univ Hosp Leuven, Dept Obstet & Gynecol, Leuven, Belgium
[9] Katholieke Univ Leuven, Dept Dev & Regenerat, Leuven, Belgium
基金
英国医学研究理事会;
关键词
OVARIAN-CANCER; EXTERNAL VALIDATION; DIAGNOSIS; MULTICENTER; MALIGNANCY; MORTALITY; SELECTION; MODELS; IMAGES; RULES;
D O I
10.1038/s41698-024-00527-8
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Ultrasound-based models exist to support the classification of adnexal masses but are subjective and rely upon ultrasound expertise. We aimed to develop an end-to-end machine learning (ML) model capable of automating the classification of adnexal masses. In this retrospective study, transvaginal ultrasound scan images with linked diagnoses (ultrasound subjective assessment or histology) were extracted and segmented from Imperial College Healthcare, UK (ICH development dataset; n = 577 masses; 1444 images) and Morgagni-Pierantoni Hospital, Italy (MPH external dataset; n = 184 masses; 476 images). A segmentation and classification model was developed using convolutional neural networks and traditional radiomics features. Dice surface coefficient (DICE) was used to measure segmentation performance and area under the ROC curve (AUC), F1-score and recall for classification performance. The ICH and MPH datasets had a median age of 45 (IQR 35-60) and 48 (IQR 38-57) years old and consisted of 23.1% and 31.5% malignant cases, respectively. The best segmentation model achieved a DICE score of 0.85 +/- 0.01, 0.88 +/- 0.01 and 0.85 +/- 0.01 in the ICH training, ICH validation and MPH test sets. The best classification model achieved a recall of 1.00 and F1-score of 0.88 (AUC:0.93), 0.94 (AUC:0.89) and 0.83 (AUC:0.90) in the ICH training, ICH validation and MPH test sets, respectively. We have developed an end-to-end radiomics-based model capable of adnexal mass segmentation and classification, with a comparable predictive performance (AUC 0.90) to the published performance of expert subjective assessment (gold standard), and current risk models. Further prospective evaluation of the classification performance of this ML model against existing methods is required.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Machine learning and radiomics for segmentation and classification of adnexal masses on ultrasound
    Jennifer F. Barcroft
    Kristofer Linton-Reid
    Chiara Landolfo
    Maya Al-Memar
    Nina Parker
    Chris Kyriacou
    Maria Munaretto
    Martina Fantauzzi
    Nina Cooper
    Joseph Yazbek
    Nishat Bharwani
    Sa Ra Lee
    Ju Hee Kim
    Dirk Timmerman
    Joram Posma
    Luca Savelli
    Srdjan Saso
    Eric O. Aboagye
    Tom Bourne
    npj Precision Oncology, 8
  • [2] Automated segmentation and radiomics based classification of adnexal masses on ultrasound
    Barcroft, J.
    Linton-Reid, K.
    Munaretto, M.
    Lee, S.
    Kim, J.
    Savelli, L.
    Bharwani, N.
    Posma, J.
    Landolfo, C.
    Kyriacou, C.
    Parker, N.
    Al-Memar, M.
    Saso, S.
    Aboagye, E.
    Bourne, T.
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2023, 62 : 8 - 9
  • [3] Automatic segmentation model and machine learning model grounded in ultrasound radiomics for distinguishing between low malignant risk and intermediate-high malignant risk of adnexal masses
    Lu Liu
    Wenjun Cai
    Feibo Zheng
    Hongyan Tian
    Yanping Li
    Ting Wang
    Xiaonan Chen
    Wenjing Zhu
    Insights into Imaging, 16 (1)
  • [4] Ultrasound of adnexal masses
    Joshi, Mukund
    Ganesan, Karthik
    Munshi, Harsha Navani
    Ganesan, Subramania
    Lawande, Ashwin
    SEMINARS IN ULTRASOUND CT AND MRI, 2008, 29 (02) : 72 - 97
  • [5] Breast ultrasound tumour classification: A Machine Learning-Radiomics based approach
    Mishra, Arnab K.
    Roy, Pinki
    Bandyopadhyay, Sivaji
    Das, Sujit K.
    EXPERT SYSTEMS, 2021, 38 (07)
  • [6] Machine Learning for Adrenal Gland Segmentation and Classification of Normal and Adrenal Masses at CT
    Robinson-Weiss, Cory
    Patel, Jay
    Bizzo, Bernardo C.
    Glazer, Daniel I.
    Bridge, Christopher P.
    Andriole, Katherine P.
    Dabiri, Borna
    Chin, John K.
    Dreyer, Keith
    Kalpathy-Cramer, Jayashree
    Mayo-Smith, William W.
    RADIOLOGY, 2023, 306 (02)
  • [7] Adnexal masses characterization by ultrasound
    Jalaguier-Coudray, Aurelie
    Perrot, Nicolas
    Delarbre, Beatrice
    Villard-Mahjoub, Rim
    IMAGERIE DE LA FEMME, 2016, 26 (02) : 72 - 80
  • [8] FUZZY DECISION TREE LEARNING FOR PREOPERATIVE CLASSIFICATION OF ADNEXAL MASSES
    Ahmadi, Emad
    Javadi, Hoda
    Khansefid, Amin
    Asadi, Atousa
    Ebadzadeh, Mohammad Mehdi
    Timmerman, Dirk
    HEALTHINF 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON HEALTH INFORMATICS, 2011, : 364 - 375
  • [9] Adnexal masses and risk of malignancy by radiomics: the future is now
    Chiappa, V.
    Interlenghi, M.
    Bascio, L. Spano
    Salvatore, C.
    Fruscio, R.
    Ferrero, S.
    Rosati, F.
    De Meis, L.
    Rolla, M.
    Ficarelli, S.
    Pino, I.
    Franchi, D.
    Mor, E.
    Maggiore, U. Leone Roberti
    Bogani, G.
    Raspagliesi, F.
    Castiglioni, I.
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2023, 62 : 8 - 8
  • [10] An explainable machine learning model to solid adnexal masses diagnosis based on clinical data and qualitative ultrasound indicators
    Fanizzi, Annarita
    Arezzo, Francesca
    Cormio, Gennaro
    Comes, Maria Colomba
    Cazzato, Gerardo
    Boldrini, Luca
    Bove, Samantha
    Bollino, Michele
    Kardhashi, Anila
    Silvestris, Erica
    Quarto, Pietro
    Mongelli, Michele
    Naglieri, Emanuele
    Signorile, Rahel
    Loizzi, Vera
    Massafra, Raffaella
    CANCER MEDICINE, 2024, 13 (12):