Explainable machine learning radiomics model for Primary Progressive Aphasia classification

被引:0
|
作者
Tafuri, Benedetta [1 ,2 ]
De Blasi, Roberto [2 ]
Nigro, Salvatore [2 ]
Logroscino, Giancarlo [1 ,2 ]
机构
[1] Univ Bari Aldo Moro, Dept Translat Biomed & Neurosci DiBraiN, Bari, Italy
[2] Univ Bari Aldo Moro, Ctr Neurodegenerat Dis & Aging Brain, Pia Fdn Card G Panico, Tricase, Italy
基金
美国国家卫生研究院;
关键词
Primary Progressive Aphasia; MRI; machine learning (ML); radiomics; explainability; SYSTEM; MRI; SEGMENTATION; DISRUPTION; NONFLUENT; DEMENTIA; SUBTYPES;
D O I
10.3389/fnsys.2024.1324437
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Introduction Primary Progressive Aphasia (PPA) is a neurodegenerative disease characterized by linguistic impairment. The two main clinical subtypes are semantic (svPPA) and non-fluent/agrammatic (nfvPPA) variants. Diagnosing and classifying PPA patients represents a complex challenge that requires the integration of multimodal information, including clinical, biological, and radiological features. Structural neuroimaging can play a crucial role in aiding the differential diagnosis of PPA and constructing diagnostic support systems.Methods In this study, we conducted a white matter texture analysis on T1-weighted images, including 56 patients with PPA (31 svPPA and 25 nfvPPA), and 53 age- and sex-matched controls. We trained a tree-based algorithm over combined clinical/radiomics measures and used Shapley Additive Explanations (SHAP) model to extract the greater impactful measures in distinguishing svPPA and nfvPPA patients from controls and each other.Results Radiomics-integrated classification models demonstrated an accuracy of 95% in distinguishing svPPA patients from controls and of 93.7% in distinguishing svPPA from nfvPPA. An accuracy of 93.7% was observed in differentiating nfvPPA patients from controls. Moreover, Shapley values showed the strong involvement of the white matter near left entorhinal cortex in patients classification models.Discussion Our study provides new evidence for the usefulness of radiomics features in classifying patients with svPPA and nfvPPA, demonstrating the effectiveness of an explainable machine learning approach in extracting the most impactful features for assessing PPA.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Classification and pathology of primary progressive aphasia
    Harris, Jennifer M.
    Gall, Claire
    Thompson, Jennifer C.
    Richardson, Anna M. T.
    Neary, David
    du Plessis, Daniel
    Pal, Piyali
    Mann, David M. A.
    Snowden, Julie S.
    Jones, Matthew
    [J]. NEUROLOGY, 2013, 81 (21) : 1832 - 1839
  • [2] Machine learning in the clinical and language characterisation of primary progressive aphasia variants
    Matias-Guiu, Jordi A.
    Diaz-Alvarez, Josefa
    Cuetos, Fernando
    Nieves Cabrera-Martin, Maria
    Segovia-Rios, Ignacio
    Pytel, Vanesa
    Moreno-Ramos, Teresa
    Carreras, Jose L.
    Matias-Guiu, Jorge
    Ayala, Jose L.
    [J]. CORTEX, 2019, 119 : 312 - 323
  • [3] A Literary Review of the Classification of Primary Progressive Aphasia
    孙爱群
    [J]. 海外英语, 2018, (09) : 214 - 215
  • [4] Classification of primary progressive aphasia and its variants
    Gorno-Tempini, M. L.
    Hillis, A. E.
    Weintraub, S.
    Kertesz, A.
    Mendez, M.
    Cappa, S. F.
    Ogar, J. M.
    Rohrer, J. D.
    Black, S.
    Boeve, B. F.
    Manes, F.
    Dronkers, N. F.
    Vandenberghe, R.
    Rascovsky, K.
    Patterson, K.
    Miller, B. L.
    Knopman, D. S.
    Hodges, J. R.
    Mesulam, M. M.
    Grossman, M.
    [J]. NEUROLOGY, 2011, 76 (11) : 1006 - 1014
  • [5] Automated Anatomic Classification of Primary Progressive Aphasia
    Faria, Andreia V.
    Crinion, Jennifer
    Leigh, Richard
    Miller, Michael
    Mori, Susumu
    Hillis, Argye E.
    [J]. AOA2010, 48TH ACADEMY OF APHASIA PROCEEDINGS, 2010, 6 : 15 - 16
  • [6] Application of Machine Learning to Electroencephalography for the Diagnosis of Primary Progressive Aphasia: A Pilot Study
    Moral-Rubio, Carlos
    Balugo, Paloma
    Fraile-Pereda, Adela
    Pytel, Vanesa
    Fernandez-Romero, Lucia
    Delgado-Alonso, Cristina
    Delgado-Alvarez, Alfonso
    Matias-Guiu, Jorge
    Matias-Guiu, Jordi A.
    Ayala, Jose Luis
    [J]. BRAIN SCIENCES, 2021, 11 (10)
  • [7] Asymmetry of radiomics features in the white matter of patients with primary progressive aphasia
    Tafuri, Benedetta
    Filardi, Marco
    Urso, Daniele
    Gnoni, Valentina
    De Blasi, Roberto
    Nigro, Salvatore
    Logroscino, Giancarlo
    [J]. FRONTIERS IN AGING NEUROSCIENCE, 2023, 15
  • [8] Asymmetry of radiomics features in the white matter of patients with Primary Progressive Aphasia
    Tafuri, Benedetta
    Filardi, Marco
    Urso, Daniele
    Gnoni, Valentina
    De Blasi, Roberto
    Nigro, Salvatore
    Logroscino, Giancarlo
    [J]. NEUROLOGY, 2023, 100 (17)
  • [9] Is it time to revisit the classification guidelines for primary progressive aphasia?
    Mesulam, M. -Marsel
    Weintraub, Sandra
    [J]. NEUROLOGY, 2014, 82 (13) : 1108 - 1109
  • [10] Primary progressive aphasia: a model for neurodegenerative disease
    Tee, Boon Lead
    Gorno-Tempini, Maria Luisa
    [J]. CURRENT OPINION IN NEUROLOGY, 2019, 32 (02) : 255 - 265