Sobolev spaces and Poincare inequalities on the Vicsek fractal

被引:5
|
作者
Baudoin, Fabrice [1 ]
Chen, Li [2 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
来源
ANNALES FENNICI MATHEMATICI | 2023年 / 48卷 / 01期
关键词
Vicsek set; Sobolev spaces; Poincar? inequalities; p-energies; real interpolation; TRIEBEL-LIZORKIN SPACES; P-ENERGY; BESOV;
D O I
10.54330/afm.122168
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that several natural approaches to Sobolev spaces coincide on the Vicsek fractal. More precisely, we show that the metric approach of Korevaar-Schoen, the approach by limit of discrete p-energies and the approach by limit of Sobolev spaces on cable systems all yield the same functional space with equivalent norms for p > 1. As a consequence we prove that the Sobolev spaces form a real interpolation scale. We also obtain LP-Poincare inequalities for all values of p >= 1.
引用
收藏
页码:3 / 26
页数:24
相关论文
共 50 条
  • [21] Characterizations of Orlicz-Sobolev Spaces by Means of Generalized Orlicz-Poincare Inequalities
    Heikkinen, Toni
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [22] ORLICZ SPACES AND ENDPOINT SOBOLEV-POINCARE INEQUALITIES FOR DIFFERENTIAL FORMS IN HEISENBERG GROUPS
    Baldi, Annalisa
    Franchi, Bruno
    Pansu, Pierre
    MATEMATICHE, 2020, 75 (01): : 167 - 194
  • [23] Two-Weight Norm, Poincare, Sobolev and Stein Weiss Inequalities on Morrey Spaces
    Ho, Kwok-Pun
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2017, 53 (01) : 119 - 139
  • [24] A unified divergent approach to Hardy-Poincare inequalities in classical and variable Sobolev spaces
    Di Fratta, Giovanni
    Fiorenza, Alberto
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (05)
  • [25] Lipschitz spaces and Poincare inequalities
    Coulhon, T
    JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 136 (01) : 81 - 113
  • [26] A generalization of Poincare and log-Sobolev inequalities
    Wang, FY
    POTENTIAL ANALYSIS, 2005, 22 (01) : 1 - 15
  • [27] Matrix Poincare, Φ-Sobolev inequalities, and quantum ensembles
    Cheng, Hao-Chung
    Hsieh, Min-Hsiu
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (03)
  • [28] POINCARE AND SOBOLEV TYPE INEQUALITIES FOR WIDDER DERIVATIVES
    Anastassiou, George A.
    DEMONSTRATIO MATHEMATICA, 2009, 42 (02) : 283 - 296
  • [29] From concentration to logarithmic Sobolev and Poincare inequalities
    Gozlan, Nathael
    Roberto, Cyril
    Samson, Paul-Marie
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (05) : 1491 - 1522
  • [30] Interpolation between logarithmic Sobolev and Poincare inequalities
    Arnold, Anton
    Bartier, Jean-Philippe
    Dolbeault, Jean
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2007, 5 (04) : 971 - 979