共 50 条
Sobolev spaces and Poincare inequalities on the Vicsek fractal
被引:5
|作者:
Baudoin, Fabrice
[1
]
Chen, Li
[2
]
机构:
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
来源:
关键词:
Vicsek set;
Sobolev spaces;
Poincar? inequalities;
p-energies;
real interpolation;
TRIEBEL-LIZORKIN SPACES;
P-ENERGY;
BESOV;
D O I:
10.54330/afm.122168
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper we prove that several natural approaches to Sobolev spaces coincide on the Vicsek fractal. More precisely, we show that the metric approach of Korevaar-Schoen, the approach by limit of discrete p-energies and the approach by limit of Sobolev spaces on cable systems all yield the same functional space with equivalent norms for p > 1. As a consequence we prove that the Sobolev spaces form a real interpolation scale. We also obtain LP-Poincare inequalities for all values of p >= 1.
引用
下载
收藏
页码:3 / 26
页数:24
相关论文