Sobolev spaces and Poincare inequalities on the Vicsek fractal

被引:5
|
作者
Baudoin, Fabrice [1 ]
Chen, Li [2 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
来源
ANNALES FENNICI MATHEMATICI | 2023年 / 48卷 / 01期
关键词
Vicsek set; Sobolev spaces; Poincar? inequalities; p-energies; real interpolation; TRIEBEL-LIZORKIN SPACES; P-ENERGY; BESOV;
D O I
10.54330/afm.122168
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that several natural approaches to Sobolev spaces coincide on the Vicsek fractal. More precisely, we show that the metric approach of Korevaar-Schoen, the approach by limit of discrete p-energies and the approach by limit of Sobolev spaces on cable systems all yield the same functional space with equivalent norms for p > 1. As a consequence we prove that the Sobolev spaces form a real interpolation scale. We also obtain LP-Poincare inequalities for all values of p >= 1.
引用
下载
收藏
页码:3 / 26
页数:24
相关论文
共 50 条