The Boundedness of Commutators of Sublinear Operators on Herz Triebel-Lizorkin Spaces with Variable Exponent

被引:1
|
作者
Fang, Chenglong [1 ]
Wei, Yingying [2 ]
Zhang, Jing [2 ]
机构
[1] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
[2] Yili Normal Univ, Sch Math & Stat, Yining 835000, Xinjiang, Peoples R China
关键词
Commutator; sublinear operator; Lipschitz spaces; Herz Triebel-Lizorkin spaces; variable exponent; BESOV;
D O I
10.1007/s00025-023-01843-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors first discuss the characterization of Herz Triebel-Lizorkin spaces with variable exponent via two families of operators. By this characterization, the authors prove that the Lipschitz commutators of sublinear operators is bounded from Herz spaces with variable exponent to Herz Triebel-Lizorkin spaces with variable exponent. As applications, the corresponding boundedness estimates for the commutators of maximal operator, Riesz potential operator and Calderon-Zygmund operator are established.
引用
收藏
页数:21
相关论文
共 50 条