The boundedness of composition operators on Triebel-Lizorkin and Besov Spaces with different homogeneities

被引:4
|
作者
Ding, Wei [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Singular integral; Triebel-Lizorkin spaces; Besov spaces; discrete Calderon's identity; almost orthogonality estimates; CALDERON-ZYGMUND THEORY; SINGULAR-INTEGRALS; HP-THEORY; PRODUCT; DUALITY; BMO;
D O I
10.1007/s10114-014-3280-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce new Triebel-Lizorkin and Besov Spaces associated with the different homogeneities of two singular integral operators. We then establish the boundedness of composition of two Caldern-Zygmund singular integral operators with different homogeneities on these Triebel-Lizorkin and Besov spaces.
引用
收藏
页码:933 / 948
页数:16
相关论文
共 50 条