Surrogate-Based Physics-Informed Neural Networks for Elliptic Partial Differential Equations

被引:4
|
作者
Zhi, Peng [1 ]
Wu, Yuching [1 ]
Qi, Cheng [1 ]
Zhu, Tao [1 ]
Wu, Xiao [1 ]
Wu, Hongyu [1 ]
机构
[1] Tongji Univ, Coll Civil Engn, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
surrogate model; convolutional neural network; physics-informed neural networks; elliptic PDE; FEM; DEEP LEARNING FRAMEWORK; STRESS;
D O I
10.3390/math11122723
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this study is to investigate the role that a deep learning approach could play in computational mechanics. In this paper, a convolutional neural network technique based on modified loss function is proposed as a surrogate of the finite element method (FEM). Several surrogate-based physics-informed neural networks (PINNs) are developed to solve representative boundary value problems based on elliptic partial differential equations (PDEs). According to the authors' knowledge, the proposed method has been applied for the first time to solve boundary value problems with elliptic partial differential equations as the governing equations. The results of the proposed surrogate-based approach are in good agreement with those of the conventional FEM. It is found that modification of the loss function could improve the prediction accuracy of the neural network. It is demonstrated that to some extent, the deep learning approach could replace the conventional numerical method as a significant surrogate model.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Physics-informed quantum neural network for solving forward and inverse problems of partial differential equations
    Xiao, Y.
    Yang, L. M.
    Shu, C.
    Chew, S. C.
    Khoo, B. C.
    Cui, Y. D.
    Liu, Y. Y.
    PHYSICS OF FLUIDS, 2024, 36 (09)
  • [42] A shallow physics-informed neural network for solving partial differential equations on static and evolving surfaces
    Hu, Wei-Fan
    Shih, Yi-Jun
    Lin, Te-Sheng
    Lai, Ming-Chih
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 418
  • [43] A Physics-Informed Recurrent Neural Network for Solving Time-Dependent Partial Differential Equations
    Liang, Ying
    Niu, Ruiping
    Yue, Junhong
    Lei, Min
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2024, 21 (10)
  • [44] PHYSICS-INFORMED FOURIER NEURAL OPERATORS: A MACHINE LEARNING METHOD FOR PARAMETRIC PARTIAL DIFFERENTIAL EQUATIONS
    Zhang, Tao
    Xiao, Hui
    Ghosh, Debdulal
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2025, 9 (01): : 45 - 64
  • [45] Physics-informed neural networks for parametric compressible Euler equations
    Wassing, Simon
    Langer, Stefan
    Bekemeyer, Philipp
    COMPUTERS & FLUIDS, 2024, 270
  • [46] APIK: Active Physics-Informed Kriging Model with Partial Differential Equations
    Chen, Jialei
    Chen, Zhehui
    Zhang, Chuck
    Wu, C. F. Jeff
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (01): : 481 - 506
  • [47] Approximating Partial Differential Equations with Physics-Informed Legendre Multiwavelets CNN
    Wang, Yahong
    Wang, Wenmin
    Yu, Cheng
    Sun, Hongbo
    Zhang, Ruimin
    FRACTAL AND FRACTIONAL, 2024, 8 (02)
  • [48] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    HELIYON, 2023, 9 (08)
  • [49] Surrogate Modeling for Soliton Wave of Nonlinear Partial Differential Equations via the Improved Physics-Informed Deep Learning
    Guo, Yanan
    Cao, Xiaoqun
    Peng, Kecheng
    Tian, Wenlong
    Zhou, Mengge
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT II, 2023, 14087 : 235 - 246
  • [50] MultiPINN: multi-head enriched physics-informed neural networks for differential equations solving
    Li K.
    Neural Computing and Applications, 2024, 36 (19) : 11371 - 11395