Surrogate-Based Physics-Informed Neural Networks for Elliptic Partial Differential Equations

被引:4
|
作者
Zhi, Peng [1 ]
Wu, Yuching [1 ]
Qi, Cheng [1 ]
Zhu, Tao [1 ]
Wu, Xiao [1 ]
Wu, Hongyu [1 ]
机构
[1] Tongji Univ, Coll Civil Engn, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
surrogate model; convolutional neural network; physics-informed neural networks; elliptic PDE; FEM; DEEP LEARNING FRAMEWORK; STRESS;
D O I
10.3390/math11122723
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this study is to investigate the role that a deep learning approach could play in computational mechanics. In this paper, a convolutional neural network technique based on modified loss function is proposed as a surrogate of the finite element method (FEM). Several surrogate-based physics-informed neural networks (PINNs) are developed to solve representative boundary value problems based on elliptic partial differential equations (PDEs). According to the authors' knowledge, the proposed method has been applied for the first time to solve boundary value problems with elliptic partial differential equations as the governing equations. The results of the proposed surrogate-based approach are in good agreement with those of the conventional FEM. It is found that modification of the loss function could improve the prediction accuracy of the neural network. It is demonstrated that to some extent, the deep learning approach could replace the conventional numerical method as a significant surrogate model.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Surrogate modeling for Bayesian inverse problems based on physics-informed neural networks
    Li, Yongchao
    Wang, Yanyan
    Yan, Liang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 475
  • [22] Stochastic physics-informed neural ordinary differential equations
    O'Leary, Jared
    Paulson, Joel A.
    Mesbah, Ali
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 468
  • [23] Stochastic physics-informed neural ordinary differential equations
    O'Leary, Jared
    Paulson, Joel A.
    Mesbah, Ali
    Journal of Computational Physics, 2022, 468
  • [24] Physics-informed neural networks as surrogate models of hydrodynamic simulators
    Donnelly, James
    Daneshkhah, Alireza
    Abolfathi, Soroush
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 912
  • [25] Estimating model inadequacy in ordinary differential equations with physics-informed neural networks
    Viana, Felipe A. C.
    Nascimento, Renato G.
    Dourado, Arinan
    Yucesan, Yigit A.
    COMPUTERS & STRUCTURES, 2021, 245
  • [26] Physics Informed Cellular Neural Networks for Solving Partial Differential Equations
    Slavova, Angela
    Litsyn, Elena
    NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES, NTADES 2023, 2024, 449 : 35 - 45
  • [27] Meta-learning Loss Functions of Parametric Partial Differential Equations Using Physics-Informed Neural Networks
    Koumpanakis, Michail
    Vilalta, Ricardo
    DISCOVERY SCIENCE, DS 2024, PT I, 2025, 15243 : 183 - 197
  • [28] Adversarial Multi-task Learning Enhanced Physics-informed Neural Networks for Solving Partial Differential Equations
    Thanasutives, Pongpisit
    Numao, Masayuki
    Fukui, Ken-ichi
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [29] A certified wavelet-based physics-informed neural network for the solution of parameterized partial differential equations
    Ernst, Lewin
    Urban, Karsten
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 45 (01) : 494 - 515
  • [30] VT-PINN:Variable transformation improves physics-informed neural networks for approximating partial differential equations
    Zheng, Jiachun
    Yang, Yunlei
    APPLIED SOFT COMPUTING, 2024, 167