Some Hermite-Hadamard and midpoint type inequalities in symmetric quantum calculus

被引:5
|
作者
Butt, Saad Ihsan [1 ]
Aftab, Muhammad Nasim [1 ]
Nabwey, Hossam A. [2 ]
Etemad, Sina [3 ,4 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore, Pakistan
[2] Prince Sattam bin Abdulaziz Univ, Coll Sci & Humanities Al Kharj, Dept Math, Al Kharj 11942, Saudi Arabia
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[4] Al Ayen Univ, Sci Res Ctr, Math Appl Sci & Engn Res Grp, Nasiriyah 64001, Iraq
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 03期
关键词
Hermite-Hadamard inequality; convex functions; symmetric quantum calculus; NEWTON-TYPE INEQUALITIES; CONVEX;
D O I
10.3934/math.2024268
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Hermite-Hadamard inequalities are common research topics explored in different dimensions. For any interval [b0, b1] subset of 2Z., we construct the idea of the Hermite-Hadamard inequality, its different kinds, and its generalization in symmetric quantum calculus at b0 is an element of [b0, b1] subset of 2Z.. We also construct parallel results for the Hermite-Hadamard inequality, its different types, and its generalization on other end point b1, and provide some examples as well. Some justification with graphical analysis is provided as well. Finally, with the assistance of these outcomes, we give a midpoint type inequality and some of its approximations for convex functions in symmetric quantum calculus.
引用
收藏
页码:5523 / 5549
页数:27
相关论文
共 50 条
  • [41] Quantum Hermite-Hadamard type integral inequalities for convex stochastic processes
    Sitthiwirattham, Thanin
    Ali, Muhammad Aamir
    Budak, Huseyin
    Chasreechai, Saowaluck
    AIMS MATHEMATICS, 2021, 6 (11): : 11989 - 12010
  • [42] SYMMETRIZED CONVEXITY AND HERMITE-HADAMARD TYPE INEQUALITIES
    Dragomir, S. S.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (04): : 901 - 918
  • [43] Quantum analogue of Hermite-Hadamard type inequalities for strongly convex functions
    Mishra, Shashi Kant
    Sharma, Ravina
    Bisht, Jaya
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2025, 74 (01)
  • [44] Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions
    Kalsoom, Humaira
    Latif, Muhammad Amer
    Idrees, Muhammad
    Arif, Muhammad
    Salleh, Zabidin
    AIMS MATHEMATICS, 2021, 6 (12): : 13291 - 13310
  • [45] QUANTUM HERMITE-HADAMARD TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS
    Cheng, Haiyang
    Zhao, Dafang
    Zhao, Guohui
    Torres, Delfim F. M.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 14 (02): : 246 - 265
  • [46] On Hermite-Hadamard type inequalities for newly defined generalized quantum integrals
    Kara, Hasan
    Budak, Huseyin
    RICERCHE DI MATEMATICA, 2024, 73 (02) : 1145 - 1166
  • [47] Hermite-Hadamard type inequalities for subadditive functions
    Kadakal, Huriye
    AIMS MATHEMATICS, 2020, 5 (02): : 930 - 939
  • [48] ON SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR TWICE DIFFERENTIABLE MAPPINGS AND APPLICATIONS
    Kirmaci, U. S.
    Dikici, R.
    TAMKANG JOURNAL OF MATHEMATICS, 2013, 44 (01): : 41 - 51
  • [49] Some fractional integral inequalities of type Hermite-Hadamard through convexity
    Qaisar, Shahid
    Nasir, Jamshed
    Butt, Saad Ihsan
    Asma, Asma
    Ahmad, Farooq
    Iqbal, Muhammad
    Hussain, Sajjad
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [50] SOME INEQUALITIES OF HERMITE-HADAMARD TYPE FOR s-CONVEX FUNCTIONS
    Alomari, Mohammad W.
    Darus, Maslina
    Kirmaci, Ugur S.
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (04) : 1643 - 1652