StfMLP: Spatiotemporal Fusion Multilayer Perceptron for Remote-Sensing Images

被引:5
|
作者
Chen, Guangsheng [1 ]
Lu, Hailiang [1 ]
Di, Donglin [2 ]
Li, Linhui [1 ]
Emam, Mahmoud [3 ]
Jing, Weipeng [1 ]
机构
[1] Northeast Forestry Univ, Coll Informat & Comp Engn, Harbin 150040, Peoples R China
[2] Shenzhen SailYond Technol Co Ltd, Shenzhen 518000, Peoples R China
[3] Menoufia Univ, Fac Artificial Intelligence, Shibin Al Kawm 32511, Egypt
基金
中国国家自然科学基金;
关键词
Data fusion; multilayer perceptron (MLP); remote-sensing (RS) images; spatiotemporal fusion multilayer perceptron (StfMLP); transductive learning; REFLECTANCE FUSION; LANDSAT;
D O I
10.1109/LGRS.2022.3230720
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Remote-sensing (RS) images with high spatial and temporal resolutions play a significant role in monitoring periodic landscape changes for earth observation science. To enrich RS images, spatiotemporal fusion (STF) is considered a promising approach. The key challenge in the current STF-based methods is the requirement for large-scale data. In this work, we propose a deep-learning-based method called spatiotemporal fusion multilayer perceptron (StfMLP) to tackle this challenge. First, our method focuses on the given data in the manner of transductive learning. Second, we propose a designed multilayer perceptron (MLP) model to capture the time dependency and consistency among the input images. Consequently, StfMLP is capable of simultaneously achieving more accurate fusion and requiring a small-scale of data. We conduct extensive experiments on two widely adopted public datasets, namely Coleambally irrigation area (CIA) and the lower Gwydir catchment (LGC). The experimental results demonstrate that the proposed method outperforms the state-of-the-art methods effectively. Code, trained model, and cropped images are available online (https://github.com/luhailaing-max/StfMLP-master).
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Semantic Segmentation of Remote-Sensing Images Based on Multiscale Feature Fusion and Attention Refinement
    He, Xin
    Zhou, Yong
    Zhao, Jiaqi
    Zhang, Man
    Yao, Rui
    Liu, Bing
    Li, Haichao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [32] Lossy compression of multispectral remote-sensing images through multiresolution data fusion techniques
    Aiazzi, B
    Alparone, L
    Baronti, S
    Selva, M
    MATHEMATICS OF DATA/IMAGE CODING, COMPRESSION, AND ENCRYPTION V, WITH APPLICATIONS, 2002, 4793 : 95 - 106
  • [33] ON REMOVING CLOUD INTERFERENCE IN REMOTE-SENSING IMAGES
    易克初
    王文涛
    Journal of Electronics(China), 1984, (01) : 18 - 27
  • [34] A Rigorously-Incremental Spatiotemporal Data Fusion Method for Fusing Remote Sensing Images
    Jing, Weipeng
    Lou, Tongtong
    Wang, Zeyu
    Zou, Weitao
    Xu, Zekun
    Mohaisen, Linda
    Li, Chao
    Wang, Jian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 6723 - 6738
  • [35] CIG-STF: Change Information Guided Spatiotemporal Fusion for Remote Sensing Images
    You, Mingzhu
    Meng, Xiangchao
    Liu, Qiang
    Shao, Feng
    Fu, Randi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [36] Explicit and stepwise models for spatiotemporal fusion of remote sensing images with deep neural networks
    Ma, Yaobin
    Wei, Jingbo
    Tang, Wenchao
    Tang, Rongxin
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 105
  • [37] MLFF-GAN: A Multilevel Feature Fusion With GAN for Spatiotemporal Remote Sensing Images
    Song, Bingze
    Liu, Peng
    Li, Jun
    Wang, Lizhe
    Zhang, Luo
    He, Guojin
    Chen, Lajiao
    Liu, Jianbo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [38] A Sensor Bias Correction Method for Reducing the Uncertainty in the Spatiotemporal Fusion of Remote Sensing Images
    Zhang, Hongwei
    Huang, Fang
    Hong, Xiuchao
    Wang, Ping
    REMOTE SENSING, 2022, 14 (14)
  • [39] Wuhan Dataset: A High-Resolution Dataset of Spatiotemporal Fusion for Remote Sensing Images
    Zhang, Xingjian
    Xie, Linglin
    Li, Shuang
    Lei, Fan
    Cao, Li
    Li, Xinghua
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [40] Spatiotemporal monitoring of droughts in Iran using remote-sensing indices
    Soheila Pouyan
    Mojgan Bordbar
    Venkatesh Ravichandran
    John P. Tiefenbacher
    Mehrzad Kherad
    Hamid Reza Pourghasemi
    Natural Hazards, 2023, 117 : 1 - 24