StfMLP: Spatiotemporal Fusion Multilayer Perceptron for Remote-Sensing Images

被引:5
|
作者
Chen, Guangsheng [1 ]
Lu, Hailiang [1 ]
Di, Donglin [2 ]
Li, Linhui [1 ]
Emam, Mahmoud [3 ]
Jing, Weipeng [1 ]
机构
[1] Northeast Forestry Univ, Coll Informat & Comp Engn, Harbin 150040, Peoples R China
[2] Shenzhen SailYond Technol Co Ltd, Shenzhen 518000, Peoples R China
[3] Menoufia Univ, Fac Artificial Intelligence, Shibin Al Kawm 32511, Egypt
基金
中国国家自然科学基金;
关键词
Data fusion; multilayer perceptron (MLP); remote-sensing (RS) images; spatiotemporal fusion multilayer perceptron (StfMLP); transductive learning; REFLECTANCE FUSION; LANDSAT;
D O I
10.1109/LGRS.2022.3230720
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Remote-sensing (RS) images with high spatial and temporal resolutions play a significant role in monitoring periodic landscape changes for earth observation science. To enrich RS images, spatiotemporal fusion (STF) is considered a promising approach. The key challenge in the current STF-based methods is the requirement for large-scale data. In this work, we propose a deep-learning-based method called spatiotemporal fusion multilayer perceptron (StfMLP) to tackle this challenge. First, our method focuses on the given data in the manner of transductive learning. Second, we propose a designed multilayer perceptron (MLP) model to capture the time dependency and consistency among the input images. Consequently, StfMLP is capable of simultaneously achieving more accurate fusion and requiring a small-scale of data. We conduct extensive experiments on two widely adopted public datasets, namely Coleambally irrigation area (CIA) and the lower Gwydir catchment (LGC). The experimental results demonstrate that the proposed method outperforms the state-of-the-art methods effectively. Code, trained model, and cropped images are available online (https://github.com/luhailaing-max/StfMLP-master).
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Fusion of remote sensing images
    V. R. S. Mani
    S. Arivazhagan
    Journal of the Geological Society of India, 2015, 86 : 726 - 732
  • [22] Semiblind Compressed Sensing: A Bidirectional-Driven Method for Spatiotemporal Fusion of Remote Sensing Images
    Liu, Peng
    Wang, Lizhe
    Chen, Jia
    Cui, Yongchuan
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17 : 19048 - 19066
  • [23] OBJECT-ORIENTED CHANGE DETECTION BASED ON SPATIOTEMPORAL RELATIONSHIP IN MULTITEMPORAL REMOTE-SENSING IMAGES
    Li, Liang
    Ying, Guowei
    Wen, Xuehu
    Zhang, Yun
    36TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT, 2015, 47 (W3): : 1241 - 1248
  • [24] MULTISENSOR IMAGE FUSION TECHNIQUES IN REMOTE-SENSING
    EHLERS, M
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 1991, 46 (01) : 19 - 30
  • [25] REMOTE-SENSING DATA FUSION ON INTELLIGENT TERMINALS
    BUTINI, F
    CAPPELLINI, V
    FINI, S
    EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, 1992, 3 (06): : 555 - 563
  • [26] RECOGNIZING THRUST FAULTS ON REMOTE-SENSING IMAGES
    PROST, GL
    WORLD OIL, 1990, 211 (03) : 39 - &
  • [27] REMOTE-SENSING - BRITISH IMAGES UP FOR SALE
    BEARDSLEY, T
    NATURE, 1983, 303 (5913) : 102 - 102
  • [28] Semantic Segmentation of Remote-Sensing Images Based on Multiscale Feature Fusion and Attention Refinement
    He, Xin
    Zhou, Yong
    Zhao, Jiaqi
    Zhang, Man
    Yao, Rui
    Liu, Bing
    Li, Haichao
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [29] FUZZY SUPERVISED CLASSIFICATION OF REMOTE-SENSING IMAGES
    WANG, F
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1990, 28 (02): : 194 - 201
  • [30] ARRSI: Automatic registration of remote-sensing images
    Wong, Alexander
    Clausi, David A.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (05): : 1483 - 1493