StfMLP: Spatiotemporal Fusion Multilayer Perceptron for Remote-Sensing Images

被引:5
|
作者
Chen, Guangsheng [1 ]
Lu, Hailiang [1 ]
Di, Donglin [2 ]
Li, Linhui [1 ]
Emam, Mahmoud [3 ]
Jing, Weipeng [1 ]
机构
[1] Northeast Forestry Univ, Coll Informat & Comp Engn, Harbin 150040, Peoples R China
[2] Shenzhen SailYond Technol Co Ltd, Shenzhen 518000, Peoples R China
[3] Menoufia Univ, Fac Artificial Intelligence, Shibin Al Kawm 32511, Egypt
基金
中国国家自然科学基金;
关键词
Data fusion; multilayer perceptron (MLP); remote-sensing (RS) images; spatiotemporal fusion multilayer perceptron (StfMLP); transductive learning; REFLECTANCE FUSION; LANDSAT;
D O I
10.1109/LGRS.2022.3230720
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Remote-sensing (RS) images with high spatial and temporal resolutions play a significant role in monitoring periodic landscape changes for earth observation science. To enrich RS images, spatiotemporal fusion (STF) is considered a promising approach. The key challenge in the current STF-based methods is the requirement for large-scale data. In this work, we propose a deep-learning-based method called spatiotemporal fusion multilayer perceptron (StfMLP) to tackle this challenge. First, our method focuses on the given data in the manner of transductive learning. Second, we propose a designed multilayer perceptron (MLP) model to capture the time dependency and consistency among the input images. Consequently, StfMLP is capable of simultaneously achieving more accurate fusion and requiring a small-scale of data. We conduct extensive experiments on two widely adopted public datasets, namely Coleambally irrigation area (CIA) and the lower Gwydir catchment (LGC). The experimental results demonstrate that the proposed method outperforms the state-of-the-art methods effectively. Code, trained model, and cropped images are available online (https://github.com/luhailaing-max/StfMLP-master).
引用
收藏
页数:5
相关论文
共 50 条
  • [1] StfMLP: Spatiotemporal Fusion Multilayer Perceptron for Remote-Sensing Images
    Chen, Guangsheng
    Lu, Hailiang
    Di, Donglin
    Li, Linhui
    Emam, Mahmoud
    Jing, Weipeng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [2] Spatiotemporal Remote-Sensing Image Fusion With Patch-Group Compressed Sensing
    Li, Lei
    Liu, Peng
    Wu, Jie
    Wang, Lizhe
    He, Guojin
    IEEE ACCESS, 2020, 8 (08): : 209199 - 209211
  • [3] Remote-sensing Images Fusion by Compressed Sensing in Contourlet Transform Domain
    Yang Senlin
    Li Yuanyuan
    Wan Guobin
    PROCEEDINGS OF 2014 IEEE WORKSHOP ON ADVANCED RESEARCH AND TECHNOLOGY IN INDUSTRY APPLICATIONS (WARTIA), 2014, : 1072 - 1075
  • [4] Change detection of remote sensing images with semi-supervised multilayer perceptron
    Patra, Swarnajyoti
    Ghosh, Susmita
    Ghosh, Ashish
    FUNDAMENTA INFORMATICAE, 2008, 84 (3-4) : 429 - 442
  • [5] Change detection of remote sensing images with semi-supervised multilayer perceptron
    Department of Computer Science and Engineering, Jadavpur University, Kolkata 700 032, India
    不详
    不详
    Fundam Inf, 2008, 3-4 (429-442):
  • [6] Remote Sensing Images Mosaicking Method Based on Spatiotemporal Fusion
    He Chaoqi
    Li Qize
    Liu Hualin
    Wei Jingbo
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (14)
  • [7] Spatiotemporal Fusion With Only Two Remote Sensing Images as Input
    Wu, Jingan
    Cheng, Qing
    Li, Huifang
    Li, Shuang
    Guan, Xiaobin
    Shen, Huanfeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 6206 - 6219
  • [8] Remote sensing tree classification with a multilayer perceptron
    Sumsion, G. Rex
    Bradshaw, Michael S.
    Hill, Kimball T.
    Pinto, Lucas D. G.
    Piccolo, Stephen R.
    PEERJ, 2019, 7
  • [9] Semi-supervised learning with multilayer perceptron for detecting changes of remote sensing images
    Patra, Swarnajyoti
    Ghosh, Susmita
    Ghosh, Ashish
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2007, 4815 : 161 - +
  • [10] A Two-Stage Pansharpening Method for the Fusion of Remote-Sensing Images
    Wang, Yazhen
    Liu, Guojun
    Zhang, Rui
    Liu, Junmin
    REMOTE SENSING, 2022, 14 (05)