HGST: A Hilbert-GeoSOT Spatio-Temporal Meshing and Coding Method for Efficient Spatio-Temporal Range Query on Massive Trajectory Data

被引:4
|
作者
Liu, Hong [1 ,2 ]
Yan, Jining [1 ,2 ]
Wang, Jinlin [3 ]
Chen, Bo [4 ]
Chen, Meng [5 ]
Huang, Xiaohui [1 ,2 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Hubei Key Lab Intelligent Geoinformat Proc, Wuhan 430074, Peoples R China
[3] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Xinjiang Key Lab Mineral Resources & Digital Geol, Urumqi 830011, Peoples R China
[4] Harbin Inst Technol, Inst Space Sci & Appl Technol, Shenzhen 518055, Peoples R China
[5] Peking Univ, Acad Adv Interdisciplinary Studies, Beijing 100088, Peoples R China
关键词
trajectory data; spatio-temporal range query; Hilbert-GeoSOT; index; Spark; HADOOP;
D O I
10.3390/ijgi12030113
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, with the widespread use of location-aware handheld devices and the development of wireless networks, trajectory data have shown a trend of rapid growth in data volume and coverage, which has led to the prosperous development of location-based services (LBS). Spatio-temporal range query, as the basis of many services, remains a challenge in supporting efficient analysis and calculation of data, especially when large volumes of trajectory data have been accumulated. We propose a Hilbert-GeoSOT spatio-temporal meshing and coding method called HGST to improve the efficiency of spatio-temporal range queries on massive trajectory data. First, the method uses Hilbert to encode the grids obtained based on the GeoSOT space division model, and then constructs a unified time division standard to generate the space-time location identification of trajectory data. Second, this paper builds a novel spatio-temporal index to organize trajectory data, and designs an adaptive spatio-temporal scaling and coding method based on HGST to improve the query performance on indexed records. Finally, we implement a prototype system based on HBase and Spark, and develop a Spark-based algorithm to accelerate the spatio-temporal range query for huge trajectory data. Extensive experiments on a real taxi trajectory dataset demonstrate that HGST improves query efficiency levels by approximately 14.77% and 34.93% compared with GeoSOT-ST and GeoMesa at various spatial scales, respectively, and has better scalability under different data volumes.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] An efficient spatio-temporal index for spatio-temporal query in wireless sensor networks
    Lee, Donhee
    Yoon, Kyoungro
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2017, 11 (10): : 4888 - 4908
  • [2] Window Query and Analysis on Massive Spatio-Temporal Data
    Wang, Huan
    Deng, Junhui
    Yuan, Guodong
    [J]. INTERNATIONAL CONFERENCE ON FUTURE INFORMATION ENGINEERING (FIE 2014), 2014, 10 : 138 - 143
  • [3] An Effective Spatio-temporal Query Framework for Massive Trajectory Data in Urban Computing
    Li, Shiqiang
    Wang, Weize
    Shan, Jiawei
    Qi, Heng
    Shen, Yanming
    Yin, Baocai
    [J]. 2019 IEEE 25TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2019, : 586 - 593
  • [4] A Data Cleaning Method on Massive Spatio-Temporal Data
    Ding, Weilong
    Cao, Yaqi
    [J]. ADVANCES IN SERVICES COMPUTING, 2016, 10065 : 173 - 182
  • [5] Generic query tool for spatio-temporal data
    van Oosterom, P
    Maessen, B
    Quak, W
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2002, 16 (08) : 713 - 748
  • [6] Spatio-temporal aggregations in trajectory Data Warehouses
    Orlando, S.
    Orsini, R.
    Raffaeta, A.
    Roncato, A.
    Silvestri, C.
    [J]. DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2007, 4654 : 66 - +
  • [7] Mining Spatio-Temporal Patterns in Trajectory Data
    Kang, Juyoung
    Yong, Hwan-Seung
    [J]. JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2010, 6 (04): : 521 - 536
  • [8] Mining Spatio-Temporal Reachable Regions over Massive Trajectory Data
    Wu, Guojun
    Ding, Yichen
    Li, Yanhua
    Bao, Jie
    Zheng, Yu
    Luo, Jun
    [J]. 2017 IEEE 33RD INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2017), 2017, : 1283 - 1294
  • [9] A Hybrid Spatio-Temporal Data Indexing Method for Trajectory Databases
    Ke, Shengnan
    Gong, Jun
    Li, Songnian
    Zhu, Qing
    Liu, Xintao
    Zhang, Yeting
    [J]. SENSORS, 2014, 14 (07) : 12990 - 13005
  • [10] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    [J]. PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282