An Effective Spatio-temporal Query Framework for Massive Trajectory Data in Urban Computing

被引:2
|
作者
Li, Shiqiang [1 ]
Wang, Weize [1 ]
Shan, Jiawei [1 ]
Qi, Heng [1 ]
Shen, Yanming [1 ]
Yin, Baocai [1 ]
机构
[1] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian, Peoples R China
基金
中国国家自然科学基金;
关键词
urban computing; trajectory data; distributed system; pre-partitioning; spatio-temporal query; HBase; SYSTEM;
D O I
10.1109/ICPADS47876.2019.00089
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of IoT techniques, urban computing has become an emerging topic in academia and industry. The goal of urban computing is to address some issues of urban planning by using the big data generated in urban facilities. The massive trajectory data processing is viewed as an important issue in urban computing. To satisfy the storage and processing requirements of massive trajectory data, a distributed system is usually adopted. However, existing distributed systems face challenges of data locality aware partitioning and various trajectory queries. In this paper, we propose a distributed framework of massive trajectory data analysis based on HBase, to realize spatio-temporal query more effectively. We first design a temporal-based pre-partitioning strategy to improve the performance of data written. Then we develop a Multi-Level Index to speed up the process of spatio-temporal query. Extensive experiments on real trajectory datasets demonstrate that the proposed framework significantly improves efficiency and usability.
引用
收藏
页码:586 / 593
页数:8
相关论文
共 50 条
  • [1] Cloud-Based Framework for Spatio-Temporal Trajectory Data Segmentation and Query
    Kang, Huaqiang
    Liu, Yan
    Zhang, Weishan
    [J]. IEEE TRANSACTIONS ON CLOUD COMPUTING, 2022, 10 (01) : 258 - 275
  • [2] Window Query and Analysis on Massive Spatio-Temporal Data
    Wang, Huan
    Deng, Junhui
    Yuan, Guodong
    [J]. INTERNATIONAL CONFERENCE ON FUTURE INFORMATION ENGINEERING (FIE 2014), 2014, 10 : 138 - 143
  • [3] HGST: A Hilbert-GeoSOT Spatio-Temporal Meshing and Coding Method for Efficient Spatio-Temporal Range Query on Massive Trajectory Data
    Liu, Hong
    Yan, Jining
    Wang, Jinlin
    Chen, Bo
    Chen, Meng
    Huang, Xiaohui
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (03)
  • [4] Introduction to spatio-temporal data driven urban computing
    Shuo Shang
    Kai Zheng
    Panos Kalnis
    [J]. Distributed and Parallel Databases, 2020, 38 : 561 - 562
  • [5] Introduction to spatio-temporal data driven urban computing
    Shang, Shuo
    Zheng, Kai
    Kalnis, Panos
    [J]. DISTRIBUTED AND PARALLEL DATABASES, 2020, 38 (03) : 561 - 562
  • [6] Reference-Based Framework for Spatio-Temporal Trajectory Compression and Query Processing
    Zheng, Kai
    Zhao, Yan
    Lian, Defu
    Zheng, Bolong
    Liu, Guanfeng
    Zhou, Xiaofang
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (11) : 2227 - 2240
  • [7] Mining Spatio-Temporal Reachable Regions over Massive Trajectory Data
    Wu, Guojun
    Ding, Yichen
    Li, Yanhua
    Bao, Jie
    Zheng, Yu
    Luo, Jun
    [J]. 2017 IEEE 33RD INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2017), 2017, : 1283 - 1294
  • [8] A framework of spatio-temporal trajectory simplification methods
    Bermingham, Luke
    Lee, Ickjai
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2017, 31 (06) : 1128 - 1153
  • [9] Generic query tool for spatio-temporal data
    van Oosterom, P
    Maessen, B
    Quak, W
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2002, 16 (08) : 713 - 748
  • [10] Optimizing segmented trajectory data storage with HBase for improved spatio-temporal query efficiency
    Bao, Yi
    Huang, Zhou
    Gong, Xuri
    Zhang, Yuyang
    Yin, Ganmin
    Wang, Han
    [J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2023, 16 (01) : 1124 - 1143