We develop the methods used by Rudnev and Wheeler (2022) to prove an incidence theorem between arbitrary sets of Mobius transformations and point sets in F-p(2). We also note some asymmetric incidence results, and give applications of these results to various problems in additive combinatorics and discrete geometry. For instance, we give an improvement to a result of Shkredov concerning the number of representations of a non-zero product defined by a set with small sum-set, and a version of Beck's theorem for Mobius transformations.
机构:
Univ Adolfo Ibanez, Fac Ingn Ciencias, Padre Hurtado 750, Vina Del Mar, ChileUniv Adolfo Ibanez, Fac Ingn Ciencias, Padre Hurtado 750, Vina Del Mar, Chile
Hernandez, Rodrigo
Martin, Maria J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Laguna, Dept Analisis Matemat, Astrofisico Francisco Sanchez S-N, San Cristobal la Laguna 38271, SpainUniv Adolfo Ibanez, Fac Ingn Ciencias, Padre Hurtado 750, Vina Del Mar, Chile
机构:
Afyon Kocatepe Univ, Fac Sci & Literature, Dept Math, Afyon, TurkeyChiang Mai Univ, Fac Sci, Dept Math, Res Ctr Math & Appl Math, Chiang Mai, Thailand