Incidences of Mobius Transformations in Fp

被引:0
|
作者
Warren, Audie [1 ]
Wheeler, James [2 ]
机构
[1] Johann Radon Inst Computat & Appl Math, 69 Altenberger Str, A-4040 Linz, Austria
[2] Univ Bristol, Sch Math, Fry Bldg,Woodland Rd, Bristol BS8 1UG, Avon, England
基金
奥地利科学基金会; 英国工程与自然科学研究理事会;
关键词
Incidences; Finite fields; Mobius transformations; Sum-product; GROWTH;
D O I
10.1007/s00454-022-00442-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We develop the methods used by Rudnev and Wheeler (2022) to prove an incidence theorem between arbitrary sets of Mobius transformations and point sets in F-p(2). We also note some asymmetric incidence results, and give applications of these results to various problems in additive combinatorics and discrete geometry. For instance, we give an improvement to a result of Shkredov concerning the number of representations of a non-zero product defined by a set with small sum-set, and a version of Beck's theorem for Mobius transformations.
引用
收藏
页码:1025 / 1037
页数:13
相关论文
共 50 条