A metric invariant of Mobius transformations

被引:1
|
作者
Suksumran, Teerapong [1 ]
Demirel, Oguzhan [2 ]
机构
[1] Chiang Mai Univ, Fac Sci, Dept Math, Res Ctr Math & Appl Math, Chiang Mai, Thailand
[2] Afyon Kocatepe Univ, Fac Sci & Literature, Dept Math, Afyon, Turkey
关键词
Mobius transformation; Poincare metric; transformation invariant; isometry group; gyrogroup; APOLLONIUS POINTS;
D O I
10.3906/mat-1902-13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The complex unit disk D = {z is an element of C: vertical bar z vertical bar < 1} is endowed with Mobius addition circle plus(M) defined by w circle plus(M) z = w+z/1+<(w)over bar>z. We prove that the metric d(T) defined on D by d(T)(w, z) = tan(-1) vertical bar - w circle plus(M) z vertical bar is an invariant of Mobius transformations carrying D onto itself. We also prove that (D, d(T)) and (D, d(P)), where d(P) denotes the Poincare metric, have the same isometry group and then classify the isometrics of (D, d(T)).
引用
收藏
页码:2876 / 2887
页数:12
相关论文
共 50 条