A metric invariant of Mobius transformations

被引:1
|
作者
Suksumran, Teerapong [1 ]
Demirel, Oguzhan [2 ]
机构
[1] Chiang Mai Univ, Fac Sci, Dept Math, Res Ctr Math & Appl Math, Chiang Mai, Thailand
[2] Afyon Kocatepe Univ, Fac Sci & Literature, Dept Math, Afyon, Turkey
关键词
Mobius transformation; Poincare metric; transformation invariant; isometry group; gyrogroup; APOLLONIUS POINTS;
D O I
10.3906/mat-1902-13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The complex unit disk D = {z is an element of C: vertical bar z vertical bar < 1} is endowed with Mobius addition circle plus(M) defined by w circle plus(M) z = w+z/1+<(w)over bar>z. We prove that the metric d(T) defined on D by d(T)(w, z) = tan(-1) vertical bar - w circle plus(M) z vertical bar is an invariant of Mobius transformations carrying D onto itself. We also prove that (D, d(T)) and (D, d(P)), where d(P) denotes the Poincare metric, have the same isometry group and then classify the isometrics of (D, d(T)).
引用
收藏
页码:2876 / 2887
页数:12
相关论文
共 50 条
  • [31] ELLIPSES AND HARMONIC MOBIUS TRANSFORMATIONS
    Ozgur, Nihal Yilmaz
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2010, 18 (02): : 201 - 207
  • [32] Compositions of random Mobius transformations
    Karmakar, S
    Key, ES
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2004, 22 (03) : 525 - 557
  • [33] On the classification of quaternionic Mobius transformations
    Cao, WS
    Parker, JR
    Wang, XT
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2004, 137 : 349 - 361
  • [34] CYCLIC GROUPS OF MOBIUS TRANSFORMATIONS
    JORGENSEN, T
    MATHEMATICA SCANDINAVICA, 1973, 33 (02) : 250 - 260
  • [35] Data augmentation with Mobius transformations
    Zhou, Sharon
    Zhang, Jiequan
    Jiang, Hang
    Lundh, Torbjorn
    Ng, Andrew Y.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (02):
  • [36] Mobius transformations of matrix polynomials
    Mackey, D. Steven
    Mackey, Niloufer
    Mehl, Christian
    Mehrmann, Volker
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 470 : 120 - 184
  • [37] MOBIUS TRANSFORMATIONS IN SEVERAL DIMENSIONS
    WATERMAN, PL
    ADVANCES IN MATHEMATICS, 1993, 101 (01) : 87 - 113
  • [38] THE SYMMETRY PRINCIPLE FOR MOBIUS TRANSFORMATIONS
    BRICKMAN, L
    AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (08): : 781 - 782
  • [39] On iterates of Mobius transformations on fields
    Northshield, S
    MATHEMATICS OF COMPUTATION, 2001, 70 (235) : 1305 - 1310
  • [40] INFINITE COMPOSITIONS OF MOBIUS TRANSFORMATIONS
    GILL, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 176 (449) : 479 - 487