Incidences of Mobius Transformations in Fp

被引:0
|
作者
Warren, Audie [1 ]
Wheeler, James [2 ]
机构
[1] Johann Radon Inst Computat & Appl Math, 69 Altenberger Str, A-4040 Linz, Austria
[2] Univ Bristol, Sch Math, Fry Bldg,Woodland Rd, Bristol BS8 1UG, Avon, England
基金
奥地利科学基金会; 英国工程与自然科学研究理事会;
关键词
Incidences; Finite fields; Mobius transformations; Sum-product; GROWTH;
D O I
10.1007/s00454-022-00442-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We develop the methods used by Rudnev and Wheeler (2022) to prove an incidence theorem between arbitrary sets of Mobius transformations and point sets in F-p(2). We also note some asymmetric incidence results, and give applications of these results to various problems in additive combinatorics and discrete geometry. For instance, we give an improvement to a result of Shkredov concerning the number of representations of a non-zero product defined by a set with small sum-set, and a version of Beck's theorem for Mobius transformations.
引用
收藏
页码:1025 / 1037
页数:13
相关论文
共 50 条
  • [41] Notes on discrete subgroups of Mobius transformations
    Wang, Hua
    Jiang, Yueping
    Cao, Wensheng
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2013, 123 (02): : 245 - 251
  • [42] The Visual Angle Metric and Mobius Transformations
    Klen, Riku
    Linden, Henri
    Vuorinen, Matti
    Wang, Gendi
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2014, 14 (2-3) : 577 - 608
  • [44] How conics govern Mobius transformations
    Frantz, M
    AMERICAN MATHEMATICAL MONTHLY, 2004, 111 (09): : 779 - 790
  • [45] THE LIMITING BEHAVIOR OF SEQUENCES OF MOBIUS TRANSFORMATIONS
    AEBISCHER, B
    MATHEMATISCHE ZEITSCHRIFT, 1990, 205 (01) : 49 - 59
  • [46] LDPC codes based on Mobius transformations
    Gholami, Mohammad
    Nassaj, Akram
    IET COMMUNICATIONS, 2019, 13 (11) : 1615 - 1624
  • [47] Degenerate Lambert quadrilaterals and Mobius transformations
    Demirel, Oguzhan
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2018, 61 (04): : 409 - 415
  • [48] Mobius transformations on R3
    Jakobs, Wencke
    Krieg, Aloys
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (04) : 375 - 383
  • [49] A REMARK ON THE MOBIUS TRANSFORMATIONS .3.
    GONG, S
    YAN, ZM
    KEXUE TONGBAO, 1987, 32 (17): : 1153 - 1156
  • [50] ON TAYLOR-SERIES AND MOBIUS TRANSFORMATIONS
    KAHANE, JP
    MONATSHEFTE FUR MATHEMATIK, 1982, 93 (04): : 289 - 292