Subfield subcodes of projective Reed-Muller codes

被引:0
|
作者
Gimenez, Philippe [1 ]
Ruano, Diego [1 ]
San-Jose, Rodrigo [1 ]
机构
[1] Univ Valladolid, IMUVA Math Res Inst, Valladolid 47011, Spain
关键词
Evaluation codes; Linear codes; Projective Reed-Muller codes; Subfield subcodes; Trace; POLYNOMIALS; SPACE;
D O I
10.1016/j.ffa.2023.102353
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Explicit bases for the subfield subcodes of projective Reed -Muller codes over the projective plane and their duals are obtained. In particular, we provide a formula for the dimension of these codes. For the general case over the projective space, we generalize the necessary tools to deal with this case as well: we obtain a universal Grobner basis for the vanishing ideal of the set of standard representatives of the projective space and we show how to reduce any monomial with respect to this Grobner basis. With respect to the parameters of these codes, by considering subfield subcodes of projective Reed-Muller codes we obtain long linear codes with good parameters over a small finite field.(c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页数:46
相关论文
共 50 条
  • [21] New Locally Correctable Codes Based on Projective Reed-Muller Codes
    Lin, Sian-Jheng
    Han, Yunghsiang S.
    Yu, Nenghai
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (06) : 3834 - 3841
  • [22] Sampling-Based Estimates of the Sizes of Constrained Subcodes of Reed-Muller Codes
    Rameshwar, V. Arvind
    Jain, Shreyas
    Kashyap, Navin
    2024 NATIONAL CONFERENCE ON COMMUNICATIONS, NCC, 2024,
  • [23] Linear codes of 2-designs associated with subcodes of the ternary generalized Reed-Muller codes
    Ding, Cunsheng
    Tang, Chunming
    Tonchev, Vladimir D.
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (04) : 625 - 641
  • [24] On the next-to-minimal weight of projective Reed-Muller codes
    Carvalho, Cicero
    Neumann, Victor G. L.
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 50 : 382 - 390
  • [25] Projective Reed-Muller type codes on higher dimensional scrolls
    Carvalho, Cicero
    Ramirez-Mondragon, Xavier
    Neumann, Victor G. L.
    Tapia-Recillas, Horacio
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (09) : 2027 - 2042
  • [27] Projective Reed-Muller type codes on rational normal scrolls
    Carvalho, Cicero
    Neumann, Victor G. L.
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 37 : 85 - 107
  • [28] Decoding of Projective Reed-Muller Codes by Dividing a Projective Space into Affine Spaces
    Nakashima, Norihiro
    Matsui, Hajime
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (03) : 733 - 741
  • [29] SUBFIELD SUBCODES OF MODIFIED REED-SOLOMON CODES
    DELSARTE, P
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (05) : 575 - 576
  • [30] Testing Reed-Muller codes
    Alon, N
    Kaufman, T
    Krivelevich, M
    Litsyn, S
    Ron, D
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (11) : 4032 - 4039