Projective Reed-Muller type codes on rational normal scrolls

被引:6
|
作者
Carvalho, Cicero [1 ]
Neumann, Victor G. L. [1 ]
机构
[1] Univ Fed Uberlandia, Fac Matemat, BR-38408902 Uberlandia, MG, Brazil
关键词
Projective variety codes; Evaluation codes; Reed-Muller type codes; Grobner bases;
D O I
10.1016/j.ffa.2015.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study an instance of projective Reed Muller type codes, i.e., codes obtained by the evaluation of homogeneous polynomials of a fixed degree in the points of a projective variety. In our case the variety is an important example of a determinantal variety, namely the projective surface known as rational normal scroll, defined over a finite field, which is the basic underlining algebraic structure of this work. We determine the dimension and a lower bound for the minimum distance of the codes, and in many cases we also find the exact value of the minimum distance. To obtain the results we use some methods from Grobner bases theory. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:85 / 107
页数:23
相关论文
共 50 条
  • [1] Projective Reed-Muller type codes on higher dimensional scrolls
    Carvalho, Cicero
    Ramirez-Mondragon, Xavier
    Neumann, Victor G. L.
    Tapia-Recillas, Horacio
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (09) : 2027 - 2042
  • [2] PROJECTIVE REED-MULLER CODES
    LACHAUD, G
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 311 : 125 - 129
  • [3] PROJECTIVE REED-MULLER CODES
    SORENSEN, AB
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (06) : 1567 - 1576
  • [4] THE PARAMETERS OF PROJECTIVE REED-MULLER CODES
    LACHAUD, G
    DISCRETE MATHEMATICS, 1990, 81 (02) : 217 - 221
  • [5] Projective Reed–Muller type codes on higher dimensional scrolls
    Cícero Carvalho
    Xavier Ramírez-Mondragón
    Victor G. L. Neumann
    Horacio Tapia-Recillas
    Designs, Codes and Cryptography, 2019, 87 : 2027 - 2042
  • [6] A Recursive Construction for Projective Reed-Muller Codes
    San-Jose, Rodrigo
    IEEE Transactions on Information Theory, 2024, 70 (12) : 8511 - 8523
  • [7] Subfield subcodes of projective Reed-Muller codes
    Gimenez, Philippe
    Ruano, Diego
    San-Jose, Rodrigo
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 94
  • [8] Maximal weight divisors of projective Reed-Muller codes
    Boner, C
    DESIGNS CODES AND CRYPTOGRAPHY, 2001, 24 (01) : 43 - 47
  • [9] Maximal Weight Divisors of Projective Reed-Muller Codes
    Chris Boner
    Designs, Codes and Cryptography, 2001, 24 : 43 - 47
  • [10] Automorphism groups of homogeneous and projective Reed-Muller codes
    Berger, T
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (11): : 935 - 938