Multi-omics Pathways Workflow (MOPAW): An Automated Multi-omics Workflow on the Cancer Genomics Cloud

被引:0
|
作者
Nguyen, Trinh [1 ]
Bian, Xiaopeng [1 ]
Roberson, David [2 ]
Khanna, Rakesh [1 ]
Chen, Qingrong [1 ]
Yan, Chunhua [1 ]
Beck, Rowan [2 ]
Worman, Zelia [2 ]
Meerzaman, Daoud [1 ]
机构
[1] NCI, Computat Genom & Bioinformat Branch, Ctr Biomed Informat & Informat Technol, 9609 Med Ctr Dr Rockville,MD 20850, Rockville, MD 20892 USA
[2] Seven Bridges, Charlestown, MA USA
基金
美国国家卫生研究院;
关键词
Multi-omics; cloud; automatic workflow; CGC; pathway analysis; TCGA; GENE; SIGNATURES;
D O I
10.1177/11769351231180992
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction:In the era of big data, gene-set pathway analyses derived from multi-omics are exceptionally powerful. When preparing and analyzing high-dimensional multi-omics data, the installation process and programing skills required to use existing tools can be challenging. This is especially the case for those who are not familiar with coding. In addition, implementation with high performance computing solutions is required to run these tools efficiently. Methods:We introduce an automatic multi-omics pathway workflow, a point and click graphical user interface to Multivariate Single Sample Gene Set Analysis (MOGSA), hosted on the Cancer Genomics Cloud by Seven Bridges Genomics. This workflow leverages the combination of different tools to perform data preparation for each given data types, dimensionality reduction, and MOGSA pathway analysis. The Omics data includes copy number alteration, transcriptomics data, proteomics and phosphoproteomics data. We have also provided an additional workflow to help with downloading data from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium and preprocessing these data to be used for this multi-omics pathway workflow. Results:The main outputs of this workflow are the distinct pathways for subgroups of interest provided by users, which are displayed in heatmaps if identified. In addition to this, graphs and tables are provided to users for reviewing. Conclusion:Multi-omics Pathway Workflow requires no coding experience. Users can bring their own data or download and preprocess public datasets from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium using our additional workflow based on the samples of interest. Distinct overactivated or deactivated pathways for groups of interest can be found. This useful information is important in effective therapeutic targeting.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [31] Multi-omics on our multitudes
    Voit, Richard A.
    Sankaran, Vijay G.
    NATURE GENETICS, 2022, 54 (10) : 1449 - 1450
  • [32] Systems Biology and Multi-Omics
    Veenstra, Timothy D.
    PROTEOMICS, 2021, 21 (3-4)
  • [33] Multi-omics peripheral and core regions of cancer
    Wang, Bingbo
    Dong, Xianan
    Hu, Jie
    Gao, Lin
    NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2022, 8 (01)
  • [34] Editorial: Integration of Multi-Omics Techniques in Cancer
    Andrieux, Geoffroy
    Chakraborty, Sajib
    FRONTIERS IN GENETICS, 2021, 12
  • [35] Multi-Omics Model Applied to Cancer Genetics
    Pettini, Francesco
    Visibelli, Anna
    Cicaloni, Vittoria
    Iovinelli, Daniele
    Spiga, Ottavia
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (11)
  • [36] A multi-omics approach on hereditary colorectal cancer
    Eiengard, Frida
    Rohlin, Anna
    Ellegard, Rada
    Palmeback, Pia
    Rosliden, Monica
    Andersson, Daniel Madan
    Olausson, Torbjorn
    Nordling, Margareta
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 585 - 585
  • [37] visMOP - A Visual Analytics Approach for Multi-omics Pathways
    Brich, N.
    Schacherer, N.
    Hoene, M.
    Weigert, C.
    Lehmann, R.
    Krone, M.
    COMPUTER GRAPHICS FORUM, 2023, 42 (03) : 259 - 270
  • [38] Multi-omics peripheral and core regions of cancer
    Bingbo Wang
    Xianan Dong
    Jie Hu
    Lin Gao
    npj Systems Biology and Applications, 8
  • [39] Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets
    Argelaguet, Ricard
    Velten, Britta
    Arnol, Damien
    Dietrich, Sascha
    Zenz, Thorsten
    Marioni, John C.
    Buettner, Florian
    Huber, Wolfgang
    Stegle, Oliver
    MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
  • [40] Editorial: Multi-Omics Approaches to Study Signaling Pathways
    Sharma, Jyoti
    Balakrishnan, Lavanya
    Kaushik, Sandeep
    Kashyap, Manoj Kumar
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8