Pre-Attention Mechanism and Convolutional Neural Network Based Multivariate Load Prediction for Demand Response

被引:7
|
作者
He, Zheyu [1 ]
Lin, Rongheng [1 ]
Wu, Budan [1 ]
Zhao, Xin [2 ]
Zou, Hua [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Comp Sci, Natl Pilot Software Engn Sch, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[2] State Grid Shandong Elect Power Co, Econ & Res Inst, Jinan 250021, Peoples R China
关键词
load prediction; attention; convolutional neural network; gate recurrent unit; REGRESSION; MODEL; CNN;
D O I
10.3390/en16083446
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The construction of smart grids has greatly changed the power grid pattern and power supply structure. For the power system, reasonable power planning and demand response is necessary to ensure the stable operation of a society. Accurate load prediction is the basis for realizing demand response for the power system. This paper proposes a Pre-Attention-CNN-GRU model (PreAttCG) which combines a convolutional neural network (CNN) and gate recurrent unit (GRU) and applies the attention mechanism in front of the whole model. The PreAttCG model accepts historical load data and more than nine other factors (including temperature, wind speed, humidity, etc.) as input. The attention layer and CNN layer effectively extract the features and weights of each factor. Load forecasting is then performed by the prediction layer, which consists of a stacked GRU. The model is verified by industrial load data from a German dataset and a Chinese dataset from the real world. The results show that the PreAttCG model has better performance (3 similar to 5% improvement in MAPE) than both LSTM with only load input and LSTM with all factors. Additionally, the experiments also show that the attention mechanism can effectively extract the weights of relevant factors affecting the load data.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Speech Separation Using Convolutional Neural Network and Attention Mechanism
    Yuan, Chun-Miao
    Sun, Xue-Mei
    Zhao, Hu
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
  • [32] Traffic Flow Prediction Based on Spatial-Temporal Attention Convolutional Neural Network
    Xia Y.
    Liu M.
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2023, 58 (02): : 340 - 347
  • [33] Image Segmentation of Intestinal Polyps using Attention Mechanism based on Convolutional Neural Network
    Paschen, Timo
    Roussel, Ryan
    Seiffert, Lennart
    Kruse, Bjoern
    Heide, Christian
    Dienstbier, Philip
    Mann, Joshua
    Rosenzweig, James
    Fennel, Thomas
    Hommelhoff, Peter
    ACS PHOTONICS, 2023,
  • [34] Optimized Convolutional Neural Network Recognition for Athletes' Pneumonia Image Based on Attention Mechanism
    Zhang, Hui
    Ma, Ruipu
    Zhao, Yingao
    Zhang, Qianqian
    Sun, Quandang
    Ma, Yuanyuan
    ENTROPY, 2022, 24 (10)
  • [35] Study of crystal properties based on attention mechanism and crystal graph convolutional neural network
    Wang, Buwei
    Fan, Qian
    Yue, Yunliang
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (19)
  • [36] Recognition of Teachers' Facial Expression Intensity Based on Convolutional Neural Network and Attention Mechanism
    Zheng, Kun
    Yang, Dong
    Liu, Junhua
    Cui, Jinling
    IEEE ACCESS, 2020, 8 : 226437 - 226444
  • [37] Tongue image segmentation algorithm based on deep convolutional neural network and attention mechanism
    Tian, Chang
    Liu, Yanjung
    Li, Meng
    Fen, Chaofan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (01) : 1473 - 1480
  • [38] Tomato leaf disease recognition based on improved convolutional neural network with attention mechanism
    Ni, Jiangong
    Zhou, Zhigang
    Zhao, Yifan
    Han, Zhongzhi
    Zhao, Longgang
    PLANT PATHOLOGY, 2023, 72 (07) : 1335 - 1344
  • [39] Seismic data denoising based on the convolutional neural network with an attention mechanism in the curvelet domain
    Bao, Qianzong
    Zhou, Mei
    Qiu, Yi
    Meitiandizhi Yu Kantan/Coal Geology and Exploration, 2024, 52 (08): : 165 - 176
  • [40] Sensors-based Human Activity Recognition with Convolutional Neural Network and Attention Mechanism
    Zhang, Wenbo
    Zhu, Tao
    Yang, Congmin
    Xiao, Jiyi
    Ning, Huansheng
    PROCEEDINGS OF 2020 IEEE 11TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2020), 2020, : 158 - 162