Pre-Attention Mechanism and Convolutional Neural Network Based Multivariate Load Prediction for Demand Response

被引:7
|
作者
He, Zheyu [1 ]
Lin, Rongheng [1 ]
Wu, Budan [1 ]
Zhao, Xin [2 ]
Zou, Hua [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Comp Sci, Natl Pilot Software Engn Sch, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[2] State Grid Shandong Elect Power Co, Econ & Res Inst, Jinan 250021, Peoples R China
关键词
load prediction; attention; convolutional neural network; gate recurrent unit; REGRESSION; MODEL; CNN;
D O I
10.3390/en16083446
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The construction of smart grids has greatly changed the power grid pattern and power supply structure. For the power system, reasonable power planning and demand response is necessary to ensure the stable operation of a society. Accurate load prediction is the basis for realizing demand response for the power system. This paper proposes a Pre-Attention-CNN-GRU model (PreAttCG) which combines a convolutional neural network (CNN) and gate recurrent unit (GRU) and applies the attention mechanism in front of the whole model. The PreAttCG model accepts historical load data and more than nine other factors (including temperature, wind speed, humidity, etc.) as input. The attention layer and CNN layer effectively extract the features and weights of each factor. Load forecasting is then performed by the prediction layer, which consists of a stacked GRU. The model is verified by industrial load data from a German dataset and a Chinese dataset from the real world. The results show that the PreAttCG model has better performance (3 similar to 5% improvement in MAPE) than both LSTM with only load input and LSTM with all factors. Additionally, the experiments also show that the attention mechanism can effectively extract the weights of relevant factors affecting the load data.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] ELFNet: An Effective Electricity Load Forecasting Model Based on a Deep Convolutional Neural Network with a Double-Attention Mechanism
    Zhao, Pei
    Ling, Guang
    Song, Xiangxiang
    APPLIED SCIENCES-BASEL, 2024, 14 (14):
  • [22] Hourly Heat Load Prediction Model Based on Temporal Convolutional Neural Network
    Song, Jiancai
    Xue, Guixiang
    Pan, Xuhua
    Ma, Yunpeng
    Li, Han
    IEEE ACCESS, 2020, 8 : 16726 - 16741
  • [23] Prediction of solar irradiance using convolutional neural network and attention mechanism-based long short-term memory network based on similar day analysis and an attention mechanism
    Hou, Xinxing
    Ju, Chao
    Wang, Bo
    HELIYON, 2023, 9 (11)
  • [24] Dynamic QoS Prediction Based on Attention Mechanism and Recurrent Neural Network
    Wang, Yingxue
    Lu, Qin
    Wang, Yichao
    Wu, Mengwei
    Li, Weixiao
    2022 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING, ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM, 2022, : 347 - 354
  • [25] Attention-based interpretable neural network for building cooling load prediction
    Li, Ao
    Xiao, Fu
    Zhang, Chong
    Fan, Cheng
    APPLIED ENERGY, 2021, 299
  • [26] Urban Water Demand Prediction Based on Attention Mechanism Graph Convolutional Network-Long Short-Term Memory
    Liu, Chunjing
    Liu, Zhen
    Yuan, Jia
    Wang, Dong
    Liu, Xin
    WATER, 2024, 16 (06)
  • [27] A Hybrid Sequence -to -Sequence Using Attention Mechanism and Convolutional Neural Network for Multistep Electricity Load Forecasting
    Sun, Shuo
    Wang, Xinli
    Yin, Xiaohong
    Wang, Lei
    Cheng, Xuexiao
    Li, Yafeng
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,
  • [28] Convolutional Neural Network based on Feature Enhancement and Attention Mechanism for Alzheimer's Disease Prediction Using MRI Images
    Liu, Fei
    Wang, Huabin
    Chen, Yonglin
    Quan, Yu
    Tao, Liang
    THIRTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2021), 2022, 12083
  • [29] Graph convolutional network-based aggregated demand response baseline load estimation
    Tao, Peng
    Xu, Fei
    Dong, Zengbo
    Zhang, Chao
    Peng, Xuefeng
    Zhao, Junpeng
    Li, Kangping
    Wang, Fei
    ENERGY, 2022, 251
  • [30] Graph convolutional network-based aggregated demand response baseline load estimation
    Tao, Peng
    Xu, Fei
    Dong, Zengbo
    Zhang, Chao
    Peng, Xuefeng
    Zhao, Junpeng
    Li, Kangping
    Wang, Fei
    Energy, 2022, 251