A cross-domain fruit classification method based on lightweight attention networks and unsupervised domain adaptation

被引:2
|
作者
Wang, Jin [1 ,2 ]
Zhang, Cheng [1 ,2 ]
Yan, Ting [1 ,2 ]
Yang, Jingru [1 ,2 ]
Lu, Xiaohui [1 ,2 ]
Lu, Guodong [1 ,2 ]
Huang, Bincheng [3 ,4 ]
机构
[1] Zhejiang Univ, State Key Lab Fluid Power & Mechatron Syst, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Engn Res Ctr Design Engn & Digital Twin Zhejiang P, Sch Mech Engn, Hangzhou 310027, Peoples R China
[3] China Elect Technol Grp Corp, Key Lab Cognit & Intelligence Technol, Beijing 100086, Peoples R China
[4] China Elect Technol Grp Corp, Informat Sci Acad, Beijing 100086, Peoples R China
关键词
Transfer learning; Deep learning; Attention mechanism; Fruit classification; KERNEL;
D O I
10.1007/s40747-022-00955-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image-based fruit classification offers many useful applications in industrial production and daily life, such as self-checkout in the supermarket, automatic fruit sorting and dietary guidance. However, fruit classification task will have different data distributions due to different application scenarios. One feasible solution to solve this problem is to use domain adaptation that adapts knowledge from the original training data (source domain) to the new testing data (target domain). In this paper, we propose a novel deep learning-based unsupervised domain adaptation method for cross-domain fruit classification. A hybrid attention module is proposed and added to MobileNet V3 to construct the HAM-MobileNet that can suppress the impact of complex backgrounds and extract more discriminative features. A hybrid loss function combining subdomain alignment and implicit distribution metrics is used to reduce domain discrepancy during model training and improve model classification performance. Two fruit classification datasets covering several domains are established to simulate common industrial and daily life application scenarios. We validate the proposed method on our constructed grape classification dataset and general fruit classification dataset. The experimental results show that the proposed method achieves an average accuracy of 95.0% and 93.2% on the two datasets, respectively. The classification model after domain adaptation can well overcome the domain discrepancy brought by different fruit classification scenarios. Meanwhile, the proposed datasets and method can serve as a benchmark for future cross-domain fruit classification research.
引用
下载
收藏
页码:4227 / 4247
页数:21
相关论文
共 50 条
  • [1] A cross-domain fruit classification method based on lightweight attention networks and unsupervised domain adaptation
    Jin Wang
    Cheng Zhang
    Ting Yan
    Jingru Yang
    Xiaohui Lu
    Guodong Lu
    Bincheng Huang
    Complex & Intelligent Systems, 2023, 9 : 4227 - 4247
  • [2] An Unsupervised Domain Adaptation Approach For Cross-Domain Visual Classification
    Hou, Cheng-An
    Yeh, Yi-Ren
    Wang, Yu-Chiang Frank
    2015 12TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2015,
  • [3] Unsupervised Domain Adaptation for Cross-domain Histopathology Image Classification
    Xiangning Li
    Chen Pan
    Lingmin He
    Xinyu Li
    Multimedia Tools and Applications, 2024, 83 : 23311 - 23331
  • [4] Unsupervised Domain Adaptation for Cross-domain Histopathology Image Classification
    Li, Xiangning
    Pan, Chen
    He, Lingmin
    Li, Xinyu
    Multimedia Tools and Applications, 2024, 83 (08) : 23311 - 23331
  • [5] Unsupervised Domain Adaptation for Cross-domain Histopathology Image Classification
    Li, Xiangning
    Pan, Chen
    He, Lingmin
    Li, Xinyu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (8) : 23311 - 23331
  • [6] Cross-Domain Attention Network for Unsupervised Domain Adaptation Crowd Counting
    Zhang, Anran
    Xu, Jun
    Luo, Xiaoyan
    Cao, Xianbin
    Zhen, Xiantong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 6686 - 6699
  • [7] Cross-domain Network Traffic Classification Using Unsupervised Domain Adaptation
    Li, Dongpu
    Yuan, Qifeng
    Li, Tan
    Chen, Shuangwu
    Yang, Jian
    2020 34TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2020), 2020, : 245 - +
  • [8] Unsupervised Energy-based Adversarial Domain Adaptation for Cross-domain Text Classification
    Zou, Han
    Yang, Jianfei
    Wu, Xiaojian
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 1208 - 1218
  • [9] Hypergraph and cross-attention-based unsupervised domain adaptation framework for cross-domain myocardial infarction localization
    Yuan, Shuaiying
    He, Ziyang
    Zhao, Jianhui
    Yuan, Zhiyong
    Alhudhaif, Adi
    Alenezi, Fayadh
    INFORMATION SCIENCES, 2023, 633 : 245 - 263
  • [10] Cross-domain feature enhancement for unsupervised domain adaptation
    Long Sifan
    Wang Shengsheng
    Zhao Xin
    Fu Zihao
    Wang Bilin
    Applied Intelligence, 2022, 52 : 17326 - 17340