Phase-field model of strain effect on superconducting transitions and mesoscale pattern formation

被引:0
|
作者
Fortino, Daniel [1 ]
Hong, Qingguo [3 ,5 ]
Ma, Limin [3 ,4 ]
Xu, Jinchao [3 ]
Chen, Long-Qing [1 ,2 ,3 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[4] Wuhan Univ, Sch Math & Stat, Wuhan, Peoples R China
[5] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
关键词
Phase-field model; Ginzburg-Landau theory; Superconductivity; Linear elasticity; GINZBURG-LANDAU THEORY; NUMERICAL-SIMULATION; PRESSURE; TEMPERATURE; SRTIO3;
D O I
10.1016/j.commatsci.2024.112814
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Despite the extensive research on superconductivity and related phenomena, the effect of the mechanical strain on the superconducting transition and mesoscale pattern formation of a material is not well understood. Here, we develop a phase -field model of strain effect on superconducting phase transitions and vortex pattern formation by coupling linear elasticity with a Time -Dependent Ginzburg-Landau (TDGL) model for superconducting phase transitions. We implement an efficient iterative method based on finite -element discretization for solving the coupled TDGL equation for the complex electronic order parameter, the magnetic equation for the vector magnetic potential, and the mechanical equilibrium equation for the mechanical displacements with arbitrary elastic boundary conditions. We study and discuss the effects of epitaxial strains on the superconducting transition temperature, critical magnetic field, and vortex pattern formation in a superconducting thin film.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A phase-field model of stress effect on grain boundary migration
    Bhattacharyya, Saswata
    Heo, Tae Wook
    Chang, Kunok
    Chen, Long-Qing
    [J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2011, 19 (03)
  • [42] Pattern formation in dynamic phase transitions
    Tang, SQ
    Wang, P
    [J]. CHINESE PHYSICS LETTERS, 2004, 21 (08) : 1566 - 1568
  • [43] A phase-field fatigue fracture model considering the thickness effect
    Hu, Chun
    Qi, Hongyu
    Li, Shaolin
    Yang, Xiaoguang
    Shi, Duoqi
    [J]. ENGINEERING FRACTURE MECHANICS, 2024, 296
  • [44] Pattern formation by phase-field relaxation of bending energy with fixed surface area and volume
    Banham, Timothy
    Li, Bo
    Zhao, Yanxiang
    [J]. PHYSICAL REVIEW E, 2014, 90 (03):
  • [45] A review of continuous modeling of periodic pattern formation with modified phase-field crystal models
    Ilya Starodumov
    Vladimir Ankudinov
    Irina Nizovtseva
    [J]. The European Physical Journal Special Topics, 2022, 231 : 1135 - 1145
  • [46] Phase-field crystal model with a vapor phase
    Schwalbach, Edwin J.
    Warren, James A.
    Wu, Kuo-An
    Voorhees, Peter W.
    [J]. PHYSICAL REVIEW E, 2013, 88 (02):
  • [47] Adaptive mesh computation of polycrystalline pattern formation using a renormalization-group reduction of the phase-field crystal model
    Athreya, Badrinarayan P.
    Goldenfeld, Nigel
    Dantzig, Jonathan A.
    Greenwood, Michael
    Provatas, Nikolas
    [J]. PHYSICAL REVIEW E, 2007, 76 (05):
  • [48] A Phase-Field Model for Flows with Phase Transition
    Kraenkel, Mirko
    Kroener, Dietmar
    [J]. THEORY, NUMERICS AND APPLICATIONS OF HYPERBOLIC PROBLEMS II, 2018, 237 : 243 - 254
  • [49] Faceting transitions in crystal growth and heteroepitaxial growth in the anisotropic phase-field crystal model
    陈成
    陈铮
    张静
    杨涛
    杜秀娟
    [J]. Chinese Physics B, 2012, 21 (11) : 502 - 508
  • [50] Faceting transitions in crystal growth and heteroepitaxial growth in the anisotropic phase-field crystal model
    Chen Cheng
    Chen Zheng
    Zhang Jing
    Yang Tao
    Du Xiu-Juan
    [J]. CHINESE PHYSICS B, 2012, 21 (11)