Phase-field model of strain effect on superconducting transitions and mesoscale pattern formation

被引:0
|
作者
Fortino, Daniel [1 ]
Hong, Qingguo [3 ,5 ]
Ma, Limin [3 ,4 ]
Xu, Jinchao [3 ]
Chen, Long-Qing [1 ,2 ,3 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[4] Wuhan Univ, Sch Math & Stat, Wuhan, Peoples R China
[5] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
关键词
Phase-field model; Ginzburg-Landau theory; Superconductivity; Linear elasticity; GINZBURG-LANDAU THEORY; NUMERICAL-SIMULATION; PRESSURE; TEMPERATURE; SRTIO3;
D O I
10.1016/j.commatsci.2024.112814
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Despite the extensive research on superconductivity and related phenomena, the effect of the mechanical strain on the superconducting transition and mesoscale pattern formation of a material is not well understood. Here, we develop a phase -field model of strain effect on superconducting phase transitions and vortex pattern formation by coupling linear elasticity with a Time -Dependent Ginzburg-Landau (TDGL) model for superconducting phase transitions. We implement an efficient iterative method based on finite -element discretization for solving the coupled TDGL equation for the complex electronic order parameter, the magnetic equation for the vector magnetic potential, and the mechanical equilibrium equation for the mechanical displacements with arbitrary elastic boundary conditions. We study and discuss the effects of epitaxial strains on the superconducting transition temperature, critical magnetic field, and vortex pattern formation in a superconducting thin film.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A Phase-Field Model for Liquid-Vapor Transitions induced by Temperature and Pressure
    Berti, A.
    Giorgi, C.
    [J]. NEW TRENDS IN FLUID AND SOLID MODELS, 2010, : 69 - 80
  • [32] On a phase-field model with advection
    Benes, M
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 141 - 150
  • [33] On the conserved phase-field model
    Miranville, Alain
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 400 (01) : 143 - 152
  • [34] On a phase-field model for electrowetting
    Eck, C.
    Fontelos, M.
    Gruen, G.
    Klingbeil, F.
    Vantzos, O.
    [J]. INTERFACES AND FREE BOUNDARIES, 2009, 11 (02) : 259 - 290
  • [35] Multigrain phase-field simulation in ferroelectrics with phase coexistences: An improved phase-field model
    Fan, Ling
    Werner, Walter
    Subotic, Swen
    Schneider, Daniel
    Hinterstein, Manuel
    Nestler, Britta
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2022, 203
  • [36] Viscosity solutions to a Cauchy problem of a phase-field model for solid-solid phase transitions
    Zheng, Junzhi
    [J]. STUDIES IN APPLIED MATHEMATICS, 2020, 145 (03) : 483 - 499
  • [37] A phase-field model for computer simulation of lamellar structure formation in γ-TiAl
    Katzarov, I
    Malinov, S
    Sha, W
    [J]. ACTA MATERIALIA, 2006, 54 (02) : 453 - 463
  • [38] Phase-field model of graphene aerogel formation by ice template method
    Yang, Chao
    Zhu, Xiangyu
    Wang, Xitao
    Wang, Junsheng
    Huang, Houbing
    [J]. APPLIED PHYSICS LETTERS, 2019, 115 (11)
  • [39] A phase-field approach to non-isothermal transitions
    Morro, A.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2008, 48 (3-4) : 621 - 633
  • [40] A review of continuous modeling of periodic pattern formation with modified phase-field crystal models
    Starodumov, Ilya
    Ankudinov, Vladimir
    Nizovtseva, Irina
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (06): : 1135 - 1145