Phase-field model of strain effect on superconducting transitions and mesoscale pattern formation

被引:0
|
作者
Fortino, Daniel [1 ]
Hong, Qingguo [3 ,5 ]
Ma, Limin [3 ,4 ]
Xu, Jinchao [3 ]
Chen, Long-Qing [1 ,2 ,3 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[4] Wuhan Univ, Sch Math & Stat, Wuhan, Peoples R China
[5] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
关键词
Phase-field model; Ginzburg-Landau theory; Superconductivity; Linear elasticity; GINZBURG-LANDAU THEORY; NUMERICAL-SIMULATION; PRESSURE; TEMPERATURE; SRTIO3;
D O I
10.1016/j.commatsci.2024.112814
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Despite the extensive research on superconductivity and related phenomena, the effect of the mechanical strain on the superconducting transition and mesoscale pattern formation of a material is not well understood. Here, we develop a phase -field model of strain effect on superconducting phase transitions and vortex pattern formation by coupling linear elasticity with a Time -Dependent Ginzburg-Landau (TDGL) model for superconducting phase transitions. We implement an efficient iterative method based on finite -element discretization for solving the coupled TDGL equation for the complex electronic order parameter, the magnetic equation for the vector magnetic potential, and the mechanical equilibrium equation for the mechanical displacements with arbitrary elastic boundary conditions. We study and discuss the effects of epitaxial strains on the superconducting transition temperature, critical magnetic field, and vortex pattern formation in a superconducting thin film.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Pattern formation in catalytic processes: Phase-field model
    Kuperman, MN
    Mikhailov, AS
    Wio, HS
    [J]. FOURTH GRANADA LECTURES IN COMPUTATIONAL PHYSICS, 1997, 493 : 309 - 309
  • [2] Phase-field models of microstructural pattern formation
    Karma, A
    [J]. THERMODYNAMICS, MICROSTRUCTURES AND PLASTICITY, 2003, 108 : 65 - 89
  • [3] Phase-Field Methods for Pattern-Formation
    Choudhury, Abhik
    Mukherjee, Rajdip
    Bhattacharyya, Saswata
    [J]. JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2016, 96 (03) : II - II
  • [4] Coarse graining for the phase-field model of fast phase transitions
    Jou, D.
    Galenko, P. K.
    [J]. PHYSICAL REVIEW E, 2013, 88 (04)
  • [5] On the asymptotic behavior of a phase-field model for elastic phase transitions
    Kalies W.D.
    [J]. Journal of Dynamics and Differential Equations, 1997, 9 (2) : 289 - 306
  • [6] A Phase-Field Model for Liquid-Vapor Transitions
    Berti, Alessia
    Giorgi, Claudio
    [J]. JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 2009, 34 (03) : 219 - 247
  • [7] Correlated noise effect on the structure formation in the phase-field crystal model
    Ankudinov, Vladimir
    Starodumov, Ilya
    Kryuchkov, Nikita P.
    Yakovlev, Egor V.
    Yurchenko, Stanislav O.
    Galenko, Peter K.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (16) : 12185 - 12193
  • [8] Phase-field calculations of pattern formation in solidification of binary alloys
    Miller, W.
    [J]. PHILOSOPHICAL MAGAZINE LETTERS, 2007, 87 (11) : 855 - 862
  • [9] Kinetics of phase transitions: Mesoscale structure, pattern formation and disordered systems - Preface
    Puri, S
    Wadhawan, V
    [J]. PHASE TRANSITIONS, 2004, 77 (5-7) : 405 - 405
  • [10] Simulation of ferroelastic phase formation using phase-field model
    Muramatsu, M.
    Yashiro, K.
    Kawada, T.
    Terada, K.
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2018, 146 : 462 - 474