Machine learning for automated experimentation in scanning transmission electron microscopy

被引:28
|
作者
Kalinin, Sergei V. [1 ]
Mukherjee, Debangshu [2 ]
Roccapriore, Kevin [3 ]
Blaiszik, Benjamin J. [4 ,5 ]
Ghosh, Ayana [2 ]
Ziatdinov, Maxim A. [2 ,3 ]
Al-Najjar, Anees [2 ]
Doty, Christina [6 ]
Akers, Sarah [6 ]
Rao, Nageswara S. [2 ]
Agar, Joshua C. [7 ]
Spurgeon, Steven R. [6 ,8 ]
机构
[1] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[4] Argonne Natl Lab, Data Sci & Learning Div, Chicago, IL 60439 USA
[5] Univ Chicago, Globus, Chicago, IL 60637 USA
[6] Pacific Northwest Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA
[7] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[8] Univ Washington, Dept Phys, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
ABERRATION CORRECTION; SYNCHROTRON; FERROELECTRICITY; LATTICE; PHYSICS; DRIFT;
D O I
10.1038/s41524-023-01142-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Machine learning (ML) has become critical for post-acquisition data analysis in (scanning) transmission electron microscopy, (S)TEM, imaging and spectroscopy. An emerging trend is the transition to real-time analysis and closed-loop microscope operation. The effective use of ML in electron microscopy now requires the development of strategies for microscopy-centric experiment workflow design and optimization. Here, we discuss the associated challenges with the transition to active ML, including sequential data analysis and out-of-distribution drift effects, the requirements for edge operation, local and cloud data storage, and theory in the loop operations. Specifically, we discuss the relative contributions of human scientists and ML agents in the ideation, orchestration, and execution of experimental workflows, as well as the need to develop universal hyper languages that can apply across multiple platforms. These considerations will collectively inform the operationalization of ML in next-generation experimentation.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Machine Learning-Enabled Image Classification for Automated Electron Microscopy
    Day, Alexandra L.
    Wahl, Carolin B.
    Gupta, Vishu
    dos Reis, Roberto
    Liao, Wei-keng
    Mirkin, Chad A.
    Dravid, Vinayak P.
    Choudhary, Alok
    Agrawal, Ankit
    MICROSCOPY AND MICROANALYSIS, 2024, 30 (03) : 456 - 465
  • [22] Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy
    Bals, Jonas
    Epple, Matthias
    RSC ADVANCES, 2023, 13 (05) : 2795 - 2802
  • [23] Determination of aberration center of Ronchigram for automated aberration correctors in scanning transmission electron microscopy
    Sannomiya, Takumi
    Sawada, Hidetaka
    Nakamichi, Tomohiro
    Hosokawa, Fumio
    Nakamura, Yoshio
    Tanishiro, Yasumasa
    Takayanagi, Kunio
    ULTRAMICROSCOPY, 2013, 135 : 71 - 79
  • [24] A brief overview of scanning transmission electron microscopy in a scanning electron microscope
    Holm, Jason
    Electronic Device Failure Analysis, 2021, 23 (04): : 18 - 26
  • [25] Application of scanning electron microscopy and transmission electron microscopy in semiconductor industry
    Zschech, E
    Langer, E
    Engelmann, HJ
    PRAKTISCHE METALLOGRAPHIE-PRACTICAL METALLOGRAPHY, 2002, 39 (12): : 634 - 643
  • [26] COMPARISON OF TRANSMISSION ELECTRON MICROSCOPY AND SCANNING ELECTRON MICROSCOPY OF FRACTURE SURFACES
    JOHARI, O
    JOURNAL OF METALS, 1968, 20 (06): : 26 - &
  • [27] Automated analysis of transmission electron micrographs of metallic nanoparticles by machine learning
    Gumbiowski, Nina
    Loza, Kateryna
    Heggen, Marc
    Epple, Matthias
    NANOSCALE ADVANCES, 2023, 5 (08): : 2318 - 2326
  • [28] Automated Nanoprobing under Scanning Electron Microscopy
    Gong, Zheng
    Chen, Brandon K.
    Liu, Jun
    Sun, Yu
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 1433 - 1438
  • [29] A System Approach to Automated Scanning Electron Microscopy
    Drake, Timothy J.
    Schamber, Frederick H.
    AMERICAN LABORATORY, 2011, 43 (08) : 24 - 26
  • [30] Electron tomography algorithms in scanning transmission electron microscopy
    E. V. Pustovalov
    V. S. Plotnikov
    B. N. Grudin
    E. B. Modin
    O. V. Voitenko
    Bulletin of the Russian Academy of Sciences: Physics, 2013, 77 (8) : 995 - 998