Machine learning for automated experimentation in scanning transmission electron microscopy

被引:28
|
作者
Kalinin, Sergei V. [1 ]
Mukherjee, Debangshu [2 ]
Roccapriore, Kevin [3 ]
Blaiszik, Benjamin J. [4 ,5 ]
Ghosh, Ayana [2 ]
Ziatdinov, Maxim A. [2 ,3 ]
Al-Najjar, Anees [2 ]
Doty, Christina [6 ]
Akers, Sarah [6 ]
Rao, Nageswara S. [2 ]
Agar, Joshua C. [7 ]
Spurgeon, Steven R. [6 ,8 ]
机构
[1] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[4] Argonne Natl Lab, Data Sci & Learning Div, Chicago, IL 60439 USA
[5] Univ Chicago, Globus, Chicago, IL 60637 USA
[6] Pacific Northwest Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA
[7] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[8] Univ Washington, Dept Phys, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
ABERRATION CORRECTION; SYNCHROTRON; FERROELECTRICITY; LATTICE; PHYSICS; DRIFT;
D O I
10.1038/s41524-023-01142-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Machine learning (ML) has become critical for post-acquisition data analysis in (scanning) transmission electron microscopy, (S)TEM, imaging and spectroscopy. An emerging trend is the transition to real-time analysis and closed-loop microscope operation. The effective use of ML in electron microscopy now requires the development of strategies for microscopy-centric experiment workflow design and optimization. Here, we discuss the associated challenges with the transition to active ML, including sequential data analysis and out-of-distribution drift effects, the requirements for edge operation, local and cloud data storage, and theory in the loop operations. Specifically, we discuss the relative contributions of human scientists and ML agents in the ideation, orchestration, and execution of experimental workflows, as well as the need to develop universal hyper languages that can apply across multiple platforms. These considerations will collectively inform the operationalization of ML in next-generation experimentation.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Automated tip functionalization via machine learning in scanning probe microscopy
    Alldritt, Benjamin
    Urtev, Fedor
    Oinonen, Niko
    Aapro, Markus
    Kannala, Juho
    Liljeroth, Peter
    Foster, Adam S.
    COMPUTER PHYSICS COMMUNICATIONS, 2022, 273
  • [12] Advanced techniques in automated high-resolution scanning transmission electron microscopy
    Pattison, Alexander J.
    Pedroso, Cassio C. S.
    Cohen, Bruce E.
    Ondry, Justin C.
    Alivisatos, A. Paul
    Theis, Wolfgang
    Ercius, Peter
    NANOTECHNOLOGY, 2024, 35 (01)
  • [13] Manifold learning of four-dimensional scanning transmission electron microscopy
    Xin Li
    Ondrej E. Dyck
    Mark P. Oxley
    Andrew R. Lupini
    Leland McInnes
    John Healy
    Stephen Jesse
    Sergei V. Kalinin
    npj Computational Materials, 5
  • [14] Manifold learning of four-dimensional scanning transmission electron microscopy
    Li, Xin
    Dyck, Ondrej E.
    Oxley, Mark P.
    Lupini, Andrew R.
    McInnes, Leland
    Healy, John
    Jesse, Stephen
    Kalinin, Sergei, V
    NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
  • [15] Uncovering material deformations via machine learning combined with four-dimensional scanning transmission electron microscopy
    Shi, Chuqiao
    Cao, Michael C.
    Rehn, Sarah M.
    Bae, Sang-Hoon
    Kim, Jeehwan
    Jones, Matthew R.
    Muller, David A.
    Han, Yimo
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [16] Unsupervised machine learning combined with 4D scanning transmission electron microscopy for bimodal nanostructural analysis
    Kimoto, Koji
    Kikkawa, Jun
    Harano, Koji
    Cretu, Ovidiu
    Shibazaki, Yuki
    Uesugi, Fumihiko
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [17] Uncovering material deformations via machine learning combined with four-dimensional scanning transmission electron microscopy
    Chuqiao Shi
    Michael C. Cao
    Sarah M. Rehn
    Sang-Hoon Bae
    Jeehwan Kim
    Matthew R. Jones
    David A. Muller
    Yimo Han
    npj Computational Materials, 8
  • [18] Introduction to transmission and scanning electron microscopy
    Verni, F
    Gabrielli, S
    FROM CELLS TO PROTEINS: IMAGING NATURE ACROSS DIMENSIONS, 2005, 3 : 23 - 35
  • [19] COMPRESSIVE SCANNING TRANSMISSION ELECTRON MICROSCOPY
    Nicholls, D.
    Robinson, A.
    Wells, J.
    Moshtaghpour, A.
    Bahri, M.
    Kirkland, A.
    Browning, N.
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1586 - 1590
  • [20] TRANSMISSION AND SCANNING ELECTRON MICROSCOPY OF ENDOSPORITES
    BRACK, SD
    TAYLOR, TN
    AMERICAN JOURNAL OF BOTANY, 1970, 57 (06) : 756 - &