Machine learning for automated experimentation in scanning transmission electron microscopy

被引:28
|
作者
Kalinin, Sergei V. [1 ]
Mukherjee, Debangshu [2 ]
Roccapriore, Kevin [3 ]
Blaiszik, Benjamin J. [4 ,5 ]
Ghosh, Ayana [2 ]
Ziatdinov, Maxim A. [2 ,3 ]
Al-Najjar, Anees [2 ]
Doty, Christina [6 ]
Akers, Sarah [6 ]
Rao, Nageswara S. [2 ]
Agar, Joshua C. [7 ]
Spurgeon, Steven R. [6 ,8 ]
机构
[1] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[4] Argonne Natl Lab, Data Sci & Learning Div, Chicago, IL 60439 USA
[5] Univ Chicago, Globus, Chicago, IL 60637 USA
[6] Pacific Northwest Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA
[7] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[8] Univ Washington, Dept Phys, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
ABERRATION CORRECTION; SYNCHROTRON; FERROELECTRICITY; LATTICE; PHYSICS; DRIFT;
D O I
10.1038/s41524-023-01142-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Machine learning (ML) has become critical for post-acquisition data analysis in (scanning) transmission electron microscopy, (S)TEM, imaging and spectroscopy. An emerging trend is the transition to real-time analysis and closed-loop microscope operation. The effective use of ML in electron microscopy now requires the development of strategies for microscopy-centric experiment workflow design and optimization. Here, we discuss the associated challenges with the transition to active ML, including sequential data analysis and out-of-distribution drift effects, the requirements for edge operation, local and cloud data storage, and theory in the loop operations. Specifically, we discuss the relative contributions of human scientists and ML agents in the ideation, orchestration, and execution of experimental workflows, as well as the need to develop universal hyper languages that can apply across multiple platforms. These considerations will collectively inform the operationalization of ML in next-generation experimentation.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Machine learning for automated experimentation in scanning transmission electron microscopy
    Sergei V. Kalinin
    Debangshu Mukherjee
    Kevin Roccapriore
    Benjamin J. Blaiszik
    Ayana Ghosh
    Maxim A. Ziatdinov
    Anees Al-Najjar
    Christina Doty
    Sarah Akers
    Nageswara S. Rao
    Joshua C. Agar
    Steven R. Spurgeon
    npj Computational Materials, 9
  • [2] Machine learning in scanning transmission electron microscopy
    不详
    NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [4] Automated electron tomography with scanning transmission electron microscopy
    Feng, Jianglin
    Somlyo, Andrew P.
    Somlyo, Avril V.
    Shao, Zhifeng
    JOURNAL OF MICROSCOPY, 2007, 228 (03) : 406 - 412
  • [5] Partial Scanning Transmission Electron Microscopy with Deep Learning
    Jeffrey M. Ede
    Richard Beanland
    Scientific Reports, 10
  • [6] Partial Scanning Transmission Electron Microscopy with Deep Learning
    Ede, Jeffrey M.
    Beanland, Richard
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [7] Machine Learning-Driven Automated Scanning Probe Microscopy
    Liu, Yongtao
    Vasudevan, Rama
    Kelley, Kyle
    Ziatdinov, Maxim
    Kalinin, Sergei
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2023, 79 : A62 - A62
  • [8] A machine perspective of atomic defects in scanning transmission electron microscopy
    Dan, Jiadong
    Zhao, Xiaoxu
    Pennycook, Stephen J.
    INFOMAT, 2019, 1 (03) : 359 - 375
  • [9] Adaptive partial scanning transmission electron microscopy with reinforcement learning
    Ede J.M.
    Machine Learning: Science and Technology, 2021, 2 (04):
  • [10] A comparison of energy dispersive spectroscopy in transmission scanning electron microscopy with scanning transmission electron microscopy
    Carter, Jennifer L. W.
    Uz, Tugce Karakulak
    Ibrahim, Buhari
    Pigott, Jeffrey S.
    Gordon, Jerard, V
    ULTRAMICROSCOPY, 2025, 270