Decoding Silent Reading EEG Signals Using Adaptive Feature Graph Convolutional Network

被引:4
|
作者
Li, Chengfang [1 ]
Fang, Gaoyun [1 ]
Liu, Yang [1 ,2 ]
Liu, Jing [1 ]
Song, Liang [1 ]
机构
[1] Fudan Univ, Acad Engn & Technol, Shanghai 200433, Peoples R China
[2] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 1A1, Canada
关键词
Electroencephalography; Decoding; Task analysis; Training; Adaptive systems; Symmetric matrices; Convolutional neural networks; Electroencephalography (EEG); silent reading; graph convolutional network; adaptive graph; language impairment; PERFORMANCE;
D O I
10.1109/LSP.2023.3337727
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Decoding silent reading Electroencephalography (EEG) signals is challenging because of its low signal-to-noise ratio. In addition, EEG signals are typically non-Euclidean structured, therefore merely using a two-dimensional matrix to represent the variation of sampling points of each channel in time cannot richly represent the spatial connection between channels. Furthermore, due to the individual differences in EEG signals, a fixed representation cannot adequately represent the temporal and spatial associations between channels in real time. In this letter, we use the feature matrix and its adaptive graph structure to represent each EEG signal. Then, we use them as inputs and propose a novel Adaptive Feature Graph Convolutional Network (AFGCN) to decode the silent reading EEG signals. We classify silent reading EEG signals under different tasks of 16 subjects from two publicly available datasets. The experimental results demonstrate that our proposed method achieves higher decoding accuracy than state-of-the-art EEG classification networks on both datasets. Among them, the highest classification accuracy for the four classes is 83.33%. The study could promote the application and development of BCI technology for silent reading EEG signal decoding. It can also provide an efficient and convenient communication method for patients with language impairment.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [31] A multiplex visibility graph motif-based convolutional neural network for characterizing sleep stages using EEG signals
    Qing Cai
    Jianpeng An
    Zhongke Gao
    Brain Science Advances, 2020, 6 (04) : 355 - 363
  • [32] GCTNet: a graph convolutional transformer network for major depressive disorder detection based on EEG signals
    Wang, Yuwen
    Peng, Yudan
    Han, Mingxiu
    Liu, Xinyi
    Niu, Haijun
    Cheng, Jian
    Chang, Suhua
    Liu, Tao
    JOURNAL OF NEURAL ENGINEERING, 2024, 21 (03)
  • [33] Feature recommendation strategy for graph convolutional network
    Qin, Jisheng
    Zeng, Xiaoqin
    Wu, Shengli
    Zou, Yang
    CONNECTION SCIENCE, 2022, 34 (01) : 1697 - 1718
  • [34] Deep Multi-scale Feature Fusion Convolutional Neural Network for Automatic Epilepsy Detection Using EEG Signals
    Qin, Hongshuai
    Deng, Bin
    Wang, Jiang
    Yi, Guosheng
    Wang, Ruofan
    Zhang, Zhen
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7061 - 7066
  • [35] A Feature-Fused Convolutional Neural Network for Emotion Recognition From Multichannel EEG Signals
    Yao, Qunli
    Gu, Heng
    Wang, Shaodi
    Li, Xiaoli
    IEEE SENSORS JOURNAL, 2022, 22 (12) : 11954 - 11964
  • [36] Adaptive Multi-Feature Fusion Graph Convolutional Network for Hyperspectral Image Classification
    Liu, Jie
    Guan, Renxiang
    Li, Zihao
    Zhang, Jiaxuan
    Hu, Yaowen
    Wang, Xueyong
    REMOTE SENSING, 2023, 15 (23)
  • [37] Investigating the application of graph theory features in hand movement directions decoding using EEG signals
    Hosseini, Seyyed Moosa
    Aminitabar, Amir Hossein
    Shalchyan, Vahid
    NEUROSCIENCE RESEARCH, 2023, 194 : 24 - 35
  • [38] EEG based depression recognition using improved graph convolutional neural network
    Zhu, Jing
    Jiang, Changting
    Chen, Junhao
    Lin, Xiangbin
    Yu, Ruilan
    Li, Xiaowei
    Bin Hu
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 148
  • [39] EEG Emotion Classification Based on Graph Convolutional Network
    Fan, Zhiqiang
    Chen, Fangyue
    Xia, Xiaokai
    Liu, Yu
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [40] A Multi-Domain Adaptive Graph Convolutional Network for EEG-based Emotion Recognition
    Li, Rui
    Wang, Yiting
    Lu, Bao-Liang
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 5565 - 5573