EEG based depression recognition using improved graph convolutional neural network

被引:35
|
作者
Zhu, Jing [1 ]
Jiang, Changting [1 ]
Chen, Junhao [1 ]
Lin, Xiangbin [1 ]
Yu, Ruilan [1 ]
Li, Xiaowei [1 ,2 ]
Bin Hu [1 ,3 ,4 ,5 ]
机构
[1] Lanzhou Univ, Gansu Prov Key Lab Wearable Comp, Sch Informat Sci & Engn, Lanzhou, Peoples R China
[2] Shandong Acad Intelligent Comp Technol, Jinan, Peoples R China
[3] Chinese Acad Sci, CAS Ctr Excellence Brain Sci & Intelligence Techn, Shanghai Inst Biol Sci, Shanghai, Peoples R China
[4] Chinese Acad Sci, Joint Res Ctr Cognit Neurosensor Technol Lanzhou, Lanzhou, Peoples R China
[5] Lanzhou Univ, Minist Educ, Engn Res Ctr Open Source Software & Real Time Sys, Lanzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Depression; EEG; Graph convolution network; Classification; FUNCTIONAL CONNECTIVITY; CLASSIFYING DEPRESSION; BRAIN NETWORKS; CHANNEL EEG;
D O I
10.1016/j.compbiomed.2022.105815
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Depression is a global psychological disease that does serious harm to people. Traditional diagnostic method of the doctor-patient communication, is not objective and accurate enough. Thus, a more accurate and objective method for depression detection is urgently needed. Resting-state electroencephalography (EEG) can effectively reflect brain function, which have been used to study the difference of the brain between the depression patients and normal controls. In this work, the Resting-state EEG data of 27 depression patients and 28 normal controls was used in this study. We constructed the brain functional network using correlation, and extracted four linear features of EEG (activity, mobility complexity and power spectral density). We utilized a learnable weight matrix in the input layer of graph convolution neural network, creatively took the brain function network as the adjacency matrix input and the linear feature as the node feature input. We proposed our model Graph Input layer attention Convolutional Network (GICN), and it provided a good performance, showing the accuracy of 96.50% for recognition of depression and normal with 10-fold cross-validation, which indicated that our model could be used as an effective auxiliary tool for depression recognition. Besides, our method significantly outperformed other method. Additionally, the learnable weight matrix in the input layer was also used to find some edges and nodes that played an important role in depression recognition. Our findings showed that temporal lobe and parietal-occipital lobe had great effect in depression identification.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] An improved graph convolutional neural network for EEG emotion recognition
    Xu, Bingyue
    Zhang, Xin
    Zhang, Xiu
    Sun, Baiwei
    Wang, Yujie
    Neural Computing and Applications, 2024, 36 (36) : 23049 - 23060
  • [2] EEG-based mild depression recognition using convolutional neural network
    Xiaowei Li
    Rong La
    Ying Wang
    Junhong Niu
    Shuai Zeng
    Shuting Sun
    Jing Zhu
    Medical & Biological Engineering & Computing, 2019, 57 : 1341 - 1352
  • [3] EEG-based mild depression recognition using convolutional neural network
    Li, Xiaowei
    La, Rong
    Wang, Ying
    Niu, Junhong
    Zeng, Shuai
    Sun, Shuting
    Zhu, Jing
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2019, 57 (06) : 1341 - 1352
  • [4] A lightweight convolutional transformer neural network for EEG-based depression recognition
    Hou, Pengfei
    Li, Xiaowei
    Zhu, Jing
    Hu, Bin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [5] A Local-Global Graph Convolutional Network for Depression Recognition using EEG Signals
    Chen, Yu
    Hu, Xiuxiu
    Xia, Lihua
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (07) : 182 - 192
  • [6] EEG-based emotion recognition using graph convolutional neural network with dual attention mechanism
    Chen, Wei
    Liao, Yuan
    Dai, Rui
    Dong, Yuanlin
    Huang, Liya
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2024, 18
  • [7] EEG emotion recognition using improved graph neural network with channel selection
    Lin, Xuefen
    Chen, Jielin
    Ma, Weifeng
    Tang, Wei
    Wang, Yuchen
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 231
  • [8] EEG-based emotion recognition via improved evolutionary convolutional neural network
    Guo, Lexiang
    Li, Nan
    Zhang, Tian
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2024, 23 (04) : 203 - 213
  • [9] Hand Movement Recognition Using Dynamical Graph Convolutional Neural Network in EEG Source Space
    Tao, Yi
    Xu, Weiwei
    Zhu, Jialin
    Wang, Maode
    Wang, Gang
    12TH ASIAN-PACIFIC CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING, VOL 1, APCMBE 2023, 2024, 103 : 311 - 322
  • [10] Graph-Embedded Convolutional Neural Network for Image-Based EEG Emotion Recognition
    Song, Tengfei
    Zheng, Wenming
    Liu, Suyuan
    Zong, Yuan
    Cui, Zhen
    Li, Yang
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (03) : 1399 - 1413