Contrastive Refinement for Dense Retrieval Inference in the Open-Domain Question Answering Task

被引:1
|
作者
Zhai, Qiuhong [1 ]
Zhu, Wenhao [1 ]
Zhang, Xiaoyu [1 ]
Liu, Chenyun [2 ]
机构
[1] Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200444, Peoples R China
[2] Shanghai Municipal Big Data Ctr, Shanghai 200444, Peoples R China
来源
FUTURE INTERNET | 2023年 / 15卷 / 04期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
dense retrieval; pseudo-reference feedback; pseudo-labels; semi-supervised learning;
D O I
10.3390/fi15040137
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, dense retrieval has emerged as the primary method for open-domain question-answering (OpenQA). However, previous research often focused on the query side, neglecting the importance of the passage side. We believe that both the query and passage sides are equally important and should be considered for improved OpenQA performance. In this paper, we propose a contrastive pseudo-labeled data constructed around passages and queries separately. We employ an improved pseudo-relevance feedback (PRF) algorithm with a knowledge-filtering strategy to enrich the semantic information in dense representations. Additionally, we proposed an Auto Text Representation Optimization Model (AOpt) to iteratively update the dense representations. Experimental results demonstrate that our methods effectively optimize dense representations, making them more distinguishable in dense retrieval, thus improving the OpenQA system's overall performance.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Document Gated Reader for Open-Domain Question Answering
    Wang, Bingning
    Yao, Ting
    Zhang, Qi
    Xu, Jingfang
    Tian, Zhixing
    Liu, Kang
    Zhao, Jun
    PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), 2019, : 85 - 94
  • [32] The structure and performance of an open-domain question answering system
    Moldovan, D
    Harabagiu, S
    Pasca, M
    Mihalcea, R
    Girju, R
    Goodrum, R
    Rus, V
    38TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, 2000, : 563 - 570
  • [33] AVADHAN: System for Open-Domain Telugu Question Answering
    Ravva, Priyanka
    Urlana, Ashok
    Shrivastava, Manish
    PROCEEDINGS OF THE 7TH ACM IKDD CODS AND 25TH COMAD (CODS-COMAD 2020), 2020, : 234 - 238
  • [34] Leveraging Knowledge Graph for Open-domain Question Answering
    Costa, Jose Ortiz
    Kulkarni, Anagha
    2018 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2018), 2018, : 389 - 394
  • [35] A dataset and baselines for sequential open-domain question answering
    Elgohary, Ahmed
    Zhao, Chen
    Boyd-Graber, Jordan
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 1077 - 1083
  • [36] Detecting Frozen Phrases in Open-Domain Question Answering
    Yadegari, Mostafa
    Kamalloo, Ehsan
    Rafiei, Davood
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 1990 - 1996
  • [37] Complementary Evidence Identification in Open-Domain Question Answering
    Mou, Xiangyang
    Yu, Mo
    Chang, Shiyu
    Feng, Yufei
    Zhang, Li
    Su, Hui
    16TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2021), 2021, : 2720 - 2726
  • [38] A New Approach For Open-Domain Question Answering System
    Alturani, Ibrahim Mahmoud Ibrahim
    Bin Hamzah, Mohd Pouzi
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2018, 18 (06): : 100 - 103
  • [39] Using clustering approaches to open-domain question answering
    Wu, Youzheng
    Kashioka, Hideki
    Zhao, Jun
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, 2007, 4394 : 506 - +
  • [40] Open-Domain Non-factoid Question Answering
    Khvalchik, Maria
    Kulkarni, Anagha
    TEXT, SPEECH, AND DIALOGUE, TSD 2017, 2017, 10415 : 290 - 298