Complementary Evidence Identification in Open-Domain Question Answering

被引:0
|
作者
Mou, Xiangyang [1 ]
Yu, Mo [2 ]
Chang, Shiyu [3 ]
Feng, Yufei [4 ]
Zhang, Li [5 ]
Su, Hui [6 ]
机构
[1] Rensselaer Polytech Inst, Troy, NY 12181 USA
[2] IBM Res, Armonk, NY USA
[3] MIT IBM Watson AI Lab, Cambridge, MA USA
[4] Queens Univ, Kingston, ON, Canada
[5] Amazon Web Serv, Seattle, WA USA
[6] Fidelity, Boston, MA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new problem of complementary evidence identification for opendomain question answering (QA). The problem aims to efficiently find a small set of passages that covers full evidence from multiple aspects as to answer a complex question. To this end, we proposes a method that learns vector representations of passages and models the sufficiency and diversity within the selected set, in addition to the relevance between the question and passages. Our experiments demonstrate that our method considers the dependence within the supporting evidence and significantly improves the accuracy of complementary evidence selection in QA domain.
引用
收藏
页码:2720 / 2726
页数:7
相关论文
共 50 条
  • [1] Advances in open-domain question answering
    Zhang, Zhi-Chang
    Zhang, Yu
    Liu, Ting
    Li, Sheng
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2009, 37 (05): : 1058 - 1069
  • [2] Advances in question classification for open-domain question answering
    School of Computer Science and Technology, Anhui University of Technology, Maanshan
    Anhui
    243002, China
    不详
    Jiangsu
    210023, China
    [J]. Tien Tzu Hsueh Pao, 8 (1627-1636):
  • [3] Type checking in open-domain question answering
    Schlobach, S
    Olsthoorn, M
    de Rijke, M
    [J]. ECAI 2004: 16TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 110 : 398 - 402
  • [4] Open-domain textual question answering techniques
    Harabagiu, Sanda M.
    Maiorano, Steven J.
    Paşca, Marius A.
    [J]. Natural Language Engineering, 2003, 9 (03) : 231 - 267
  • [5] Ranking and Sampling in Open-Domain Question Answering
    Xu, Yanfu
    Lin, Zheng
    Liu, Yuanxin
    Liu, Rui
    Wang, Weiping
    Meng, Dan
    [J]. 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 2412 - 2421
  • [6] Passage filtering for open-domain Question Answering
    Noguera, Elisa
    Llopis, Fernando
    Ferrandez, Antonio
    [J]. ADVANCES IN NATURAL LANGUAGE PROCESSING, PROCEEDINGS, 2006, 4139 : 534 - 540
  • [7] A Light Ranker for Open-Domain Question Answering
    Qiu, Boyu
    Xu, Jungang
    Chen, Xu
    Sun, Yingfei
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [8] PyGaggle: A Gaggle of Resources for Open-Domain Question Answering
    Pradeep, Ronak
    Chen, Haonan
    Gu, Lingwei
    Tamber, Manveer Singh
    Lin, Jimmy
    [J]. ADVANCES IN INFORMATION RETRIEVAL, ECIR 2023, PT III, 2023, 13982 : 148 - 162
  • [9] Adaptive Information Seeking for Open-Domain Question Answering
    Zhu, Yunchang
    Pang, Liang
    Lan, Yanyan
    Shen, Huawei
    Cheng, Xueqi
    [J]. 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 3615 - 3626
  • [10] ODSQA: OPEN-DOMAIN SPOKEN QUESTION ANSWERING DATASET
    Lee, Chia-Hsuan
    Wang, Shang-Ming
    Chang, Huan-Cheng
    Lee, Hung-Yi
    [J]. 2018 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY (SLT 2018), 2018, : 949 - 956