The Euler-Bernoulli Limit of Thin Brittle Linearized Elastic Beams

被引:0
|
作者
Ginster, Janusz [1 ]
Gladbach, Peter [2 ]
机构
[1] Humboldt Univ, Inst Math, Unter Linden 6, D-10099 Berlin, Germany
[2] Univ Bonn, Inst Angew Math, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
Dimension reduction; Brittle fracture; Gamma-Convergence; Euler-Bernoulli beam; NONLINEAR MEMBRANE ENERGY; VARIATIONAL DERIVATION; GAMMA-LIMIT; MODEL; FRACTURE; BLAKE; FILMS;
D O I
10.1007/s10659-023-10040-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We show that the linear brittle Griffith energy on a thin rectangle Gamma-converges after rescaling to the linear one-dimensional brittle Euler-Bernoulli beam energy.In contrast to the existing literature, we prove a corresponding sharp compactness result, namely a suitable weak convergence after subtraction of piecewise rigid motions with the number of jumps bounded by the energy.
引用
收藏
页码:125 / 155
页数:31
相关论文
共 50 条
  • [31] Non-linear vibration of Euler-Bernoulli beams
    Barari, A.
    Kaliji, H. D.
    Ghadimi, M.
    Domairry, G.
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2011, 8 (02): : 139 - 148
  • [32] Dynamic analogy between Timoshenko and Euler-Bernoulli beams
    De Rosa, M. A.
    Lippiello, M.
    Armenio, G.
    De Biase, G.
    Savalli, S.
    ACTA MECHANICA, 2020, 231 (11) : 4819 - 4834
  • [33] Fractional visco-elastic Euler-Bernoulli beam
    Di Paola, M.
    Heuer, R.
    Pirrotta, A.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2013, 50 (22-23) : 3505 - 3510
  • [34] Influences of Elastic Supports on Moving Load Identification of Euler-Bernoulli Beams Using Angular Velocity
    Qiao, Guandong
    Rahmatalla, Salam
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2021, 143 (04):
  • [35] JUNCTION PROBLEM FOR EULER-BERNOULLI AND TIMOSHENKO ELASTIC INCLUSIONS IN ELASTIC BODIES
    Khludnev, A. M.
    Popova, T. S.
    QUARTERLY OF APPLIED MATHEMATICS, 2016, 74 (04) : 705 - 718
  • [36] Asymptotic behavior of coupled Euler-Bernoulli beams with pointwise dissipation
    Ammari, K
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 278 (01) : 65 - 76
  • [37] A pinned network of Euler-Bernoulli beams under feedback controls
    Zhang Kuiting
    Xu Genqi
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2013, 26 (03) : 313 - 334
  • [38] The short-time impulse response of Euler-Bernoulli beams
    Chatterjee, A
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2004, 71 (02): : 208 - 218
  • [39] An Analytical Study of Nonlinear Vibrations of Buckled Euler-Bernoulli Beams
    Pakar, I.
    Bayat, M.
    ACTA PHYSICA POLONICA A, 2013, 123 (01) : 48 - 52
  • [40] The short-time impulse response of euler-bernoulli beams
    Chatterjee, A. (anindya@mecheng.iisc.ernet.in), 1600, American Society of Mechanical Engineers (71):