Non-linear vibration of Euler-Bernoulli beams

被引:82
|
作者
Barari, A. [1 ]
Kaliji, H. D. [2 ]
Ghadimi, M. [3 ]
Domairry, G. [3 ]
机构
[1] Aalborg Univ, Dept Civil Engn, DK-9000 Aalborg, Denmark
[2] Islamic Azad Univ, Dept Mech Engn, Semnan Branch, Semnan, Iran
[3] Babol Univ Technol, Dept Mech Engn, Babol Sar, Iran
来源
关键词
Variational Iteration Method (VIM); Parametrized Perturbation Method (PPM); Galerkin method; non-linear vibration; Euler-Bernoulli beam; VARIATIONAL ITERATION METHOD; DYNAMIC-RESPONSE; FORMULATION; OSCILLATOR;
D O I
10.1590/S1679-78252011000200002
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this paper, variational iteration (VIM) and parametrized perturbation (PPM) methods have been used to investigate non-linear vibration of Euler-Bernoulli beams subjected to the axial loads. The proposed methods do not require small parameter in the equation which is difficult to be found for nonlinear problems. Comparison of VIM and PPM with Runge-Kutta 4th leads to highly accurate solutions.
引用
收藏
页码:139 / 148
页数:10
相关论文
共 50 条
  • [1] Analytical study on the non-linear vibration of Euler-Bernoulli beams
    Pakar, Iman
    Bayat, Mahmoud
    [J]. JOURNAL OF VIBROENGINEERING, 2012, 14 (01) : 216 - 224
  • [2] Chaotic and synchronized dynamics of non-linear Euler-Bernoulli beams
    Awrejcewicz, J.
    Krysko, A. V.
    Dobriyan, V.
    Papkova, I. V.
    Krysko, V. A.
    [J]. COMPUTERS & STRUCTURES, 2015, 155 : 85 - 96
  • [3] Nonlinear vibration of Euler-Bernoulli beams resting on linear elastic foundation
    Javanmard, Mehran
    Bayat, Mahdi
    Ardakani, Alireza
    [J]. STEEL AND COMPOSITE STRUCTURES, 2013, 15 (04): : 439 - 449
  • [4] Exact formulations of non-linear planar and spatial Euler-Bernoulli beams with finite strains
    Abedinnasab, M. H.
    Zohoor, H.
    Yoon, Y-J
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2012, 226 (C5) : 1225 - 1236
  • [5] A Multimode Approach to Geometrically Non-linear Forced Vibrations of Euler-Bernoulli Multispan Beams
    Fakhreddine, Hatim
    Adri, Ahmed
    Rifai, Said
    Benamar, Rhali
    [J]. JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2020, 8 (02) : 319 - 326
  • [6] Non-linear vibration and bifurcation analysis of Euler-Bernoulli beam under parametric excitation
    Liao, Pengtai
    [J]. Journal of Engineering and Applied Science, 2024, 71 (01):
  • [7] Analytical Approximation of Nonlinear Vibration of Euler-Bernoulli Beams
    Jafari, S. S.
    Rashidi, M. M.
    Johnson, S.
    [J]. LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2016, 13 (07): : 1250 - 1264
  • [8] Flexible multibody dynamics based on a non-linear Euler-Bernoulli kinematics
    Boyer, F
    Glandais, N
    Khalil, W
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 54 (01) : 27 - 59
  • [9] FREE VIBRATION OF AXIALLY FUNCTIONALLY GRADED EULER-BERNOULLI BEAMS
    Kukla, Stanislaw
    Rychlewska, Jowita
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2014, 13 (01) : 39 - 44
  • [10] Fast reduced model of non-linear dynamic Euler-Bernoulli beam behaviour
    Ordaz-Hernandez, Keny
    Fischer, Xavier
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2008, 50 (08) : 1237 - 1246