Common Values of Generalized Fibonacci and Leonardo Sequences

被引:0
|
作者
Tripathy, Bibhu Prasad [1 ]
Patel, Bijan Kumar [1 ]
机构
[1] KIIT Univ Bhubaneswar, Sch Appl Sci, Dept Math, Bhubaneswar 751024, Odisha, India
关键词
k-generalized Fibonacci number; Leonardo number; linear form in logarithms; reduction method; K-FIBONACCI;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an integer k > 2, let F (k) n be the k-generalized Fibonacci sequence that starts with 0, ... , 0,1,1 (k terms) and each term afterwards is the sum of k preceding terms. In this paper, we find all the k-generalized Fibonacci numbers that are Leonardo numbers. More explicitly, we solve the Diophantine equation F (k) n = Lem in positive integers n, k, m with k > 2.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Common values of generalized Fibonacci and Pell sequences
    Bravo, Jhon J.
    Herrera, Jose L.
    Luca, Florian
    JOURNAL OF NUMBER THEORY, 2021, 226 : 51 - 71
  • [2] Generalized Fibonacci-Leonardo numbers
    Bednarz, Urszula
    Wolowiec-Musial, Malgorzata
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2024, 30 (01) : 111 - 121
  • [3] On ∞-generalized Fibonacci sequences
    Motta, W
    Rachidi, M
    Saeki, O
    FIBONACCI QUARTERLY, 1999, 37 (03): : 223 - 232
  • [4] Generalized Fibonacci functions and sequences of generalized Fibonacci functions
    Lee, GY
    Kim, JS
    Cho, TH
    FIBONACCI QUARTERLY, 2003, 41 (02): : 108 - 121
  • [5] Polynomial values in Fibonacci sequences
    Ostrov, Adi
    Neftin, Danny
    Berman, Avi
    Elrazik, Reyad A.
    INVOLVE, A JOURNAL OF MATHEMATICS, 2020, 13 (04): : 597 - 605
  • [6] LINEARLIZATION OF GENERALIZED FIBONACCI SEQUENCES
    Jang, Young Ho
    Jun, Sang Pyo
    KOREAN JOURNAL OF MATHEMATICS, 2014, 22 (03): : 443 - 454
  • [7] On periodic ∞-generalized Fibonacci sequences
    Bernoussi, B
    Motta, W
    Rachidi, M
    Saeki, O
    FIBONACCI QUARTERLY, 2004, 42 (04): : 361 - 367
  • [8] A note on generalized Fibonacci sequences
    Yayenie, Omer
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) : 5603 - 5611
  • [9] RATIOS OF GENERALIZED FIBONACCI SEQUENCES
    DENCE, TP
    FIBONACCI QUARTERLY, 1987, 25 (02): : 137 - 143
  • [10] Coincidences in generalized Fibonacci sequences
    Bravo, Jhon J.
    Luca, Florian
    JOURNAL OF NUMBER THEORY, 2013, 133 (06) : 2121 - 2137