Machine learning-based spatial data development for optimizing astronomical observatory sites in Indonesia

被引:4
|
作者
Sakti, Anjar Dimara [1 ]
Zakiar, Muhammad Rizky [2 ]
Santoso, Cokro [2 ]
Windasari, Nila Armelia [3 ]
Jaelani, Anton Timur [4 ,5 ,6 ]
Damayanti, Seny [7 ]
Anggraini, Tania Septi [1 ,2 ]
Putri, Anissa Dicky [2 ]
Hudalah, Delik [8 ]
Deliar, Albertus [1 ]
机构
[1] Inst Teknol Bandung, Fac Earth Sci & Technol, Remote Sensing & Geog Informat Sci Res Grp, Bandung, Indonesia
[2] Inst Teknol Bandung, Ctr Remote Sensing, Bandung, Indonesia
[3] Inst Teknol Bandung, Sch Business & Management, Business Strategy & Mkt Res Grp, Bandung, Indonesia
[4] Inst Teknol Bandung, Fac Math & Nat Sci, Astron Res Grp, Bandung, Indonesia
[5] Inst Teknol Bandung, Fac Math & Nat Sci, Bosscha Observ, Bandung, Indonesia
[6] Inst Teknol Bandung, U CoE AI VLB, Bandung, Indonesia
[7] Inst Teknol Bandung, Fac Civil & Environm Engn, Air & Waste Management Res Grp, Bandung, Indonesia
[8] Inst Teknol Bandung, Sch Architecture Planning & Policy Dev, Reg & Rural Planning Res Grp, Bandung, Indonesia
来源
PLOS ONE | 2023年 / 18卷 / 10期
关键词
SKY BRIGHTNESS; SELECTION; MODEL; GIS;
D O I
10.1371/journal.pone.0293190
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Astronomical observatory construction plays an essential role in astronomy research, education, and tourism development worldwide. This study develops siting distribution scenarios for astronomical observatory locations in Indonesia using a suitability analysis by integrating the physical and atmospheric observatory suitability indexes, machine learning models, and long-term climate models. Subsequently, potential sites are equalized based on longitude and latitude zonal divisions considering air pollution disturbance risks. The study novelty comes from the integrated model development of physical and socio-economic factors, dynamic spatiotemporal analysis of atmospheric factors, and the consideration of equitable low air-pollution-disturbance-risk distribution in optimal country-level observatory construction scenarios. Generally, Indonesia comprises high suitability index and low multi-source air pollution risk areas, although some area has high astronomical suitability and high-medium air pollution risk. Most of Java, the east coast of Sumatra, and the west and south coasts of Kalimantan demonstrate "low astronomical suitability-high air pollution risk." A total of eighteen locations are recommended for new observatories, of which five, one, three, four, two, and three are on Sumatra, Java, Kalimantan, Nusa Tenggara, Sulawesi, and Papua, respectively. This study provides a comprehensive approach to determine the optimal observatory construction site to optimize the potential of astronomical activities.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Machine learning-based processing of unbalanced data sets for computer algorithms
    Zhou, Qingwei
    Qi, Yongjun
    Tang, Hailin
    Wu, Peng
    OPEN COMPUTER SCIENCE, 2023, 13 (01)
  • [42] Machine Learning-Based Anomaly Detection on Seawater Temperature Data with Oversampling
    Kang, Hangoo
    Kim, Dongil
    Lim, Sungsu
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (05)
  • [43] Modular machine learning-based elastoplasticity: Generalization in the context of limited data
    Fuhg, Jan Niklas
    Hamel, Craig M.
    Johnson, Kyle
    Jones, Reese
    Bouklas, Nikolaos
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 407
  • [44] A Machine Learning-Based Data Fusion Approach for Improved Corrosion Testing
    Christoph Völker
    Sabine Kruschwitz
    Gino Ebell
    Surveys in Geophysics, 2020, 41 : 531 - 548
  • [45] On the Role of Data Balancing for Machine Learning-Based Code Smell Detection
    Pecorelli, Fabiano
    Di Nucci, Dario
    De Roover, Coen
    De Lucia, Andrea
    PROCEEDINGS OF THE 3RD ACM SIGSOFT INTERNATIONAL WORKSHOP ON MACHINE LEARNING TECHNIQUES FOR SOFTWARE QUALITY EVALUATION (MALTESQUE '19), 2019, : 19 - 24
  • [46] A Machine Learning-Based Extraction of Cruise Phase from Trajectory Data
    Lee, Seokhwan
    Ryut, Jaeyoung
    Park, Bae-Seon
    Lee, Hak-Tae
    AIAA AVIATION FORUM AND ASCEND 2024, 2024,
  • [47] Machine learning-based clinical decision support using laboratory data
    Cubukcu, Hikmet Can
    Topcu, Deniz Ilhan
    Yenice, Sedef
    CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2024, 62 (05) : 793 - 823
  • [48] How Linked Data can Aid Machine Learning-Based Tasks
    Mountantonakis, Michalis
    Tzitzikas, Yannis
    RESEARCH AND ADVANCED TECHNOLOGY FOR DIGITAL LIBRARIES (TPDL 2017), 2017, 10450 : 155 - 168
  • [49] Machine Learning-Based Field Data Analysis and Modeling for Drone Communications
    Shan, Lin
    Miura, Ryu
    Kagawa, Toshinori
    Ono, Fumie
    Li, Huan-Bang
    Kojima, Fumihide
    IEEE ACCESS, 2019, 7 : 79127 - 79135
  • [50] Automatic Machine Learning-Based OLAP Measure Detection for Tabular Data
    Yang, Yuzhao
    Abdelhedi, Fatma
    Darmont, Jerome
    Ravat, Franck
    Teste, Olivier
    BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY, DAWAK 2022, 2022, 13428 : 173 - 188