Machine learning-based spatial data development for optimizing astronomical observatory sites in Indonesia

被引:4
|
作者
Sakti, Anjar Dimara [1 ]
Zakiar, Muhammad Rizky [2 ]
Santoso, Cokro [2 ]
Windasari, Nila Armelia [3 ]
Jaelani, Anton Timur [4 ,5 ,6 ]
Damayanti, Seny [7 ]
Anggraini, Tania Septi [1 ,2 ]
Putri, Anissa Dicky [2 ]
Hudalah, Delik [8 ]
Deliar, Albertus [1 ]
机构
[1] Inst Teknol Bandung, Fac Earth Sci & Technol, Remote Sensing & Geog Informat Sci Res Grp, Bandung, Indonesia
[2] Inst Teknol Bandung, Ctr Remote Sensing, Bandung, Indonesia
[3] Inst Teknol Bandung, Sch Business & Management, Business Strategy & Mkt Res Grp, Bandung, Indonesia
[4] Inst Teknol Bandung, Fac Math & Nat Sci, Astron Res Grp, Bandung, Indonesia
[5] Inst Teknol Bandung, Fac Math & Nat Sci, Bosscha Observ, Bandung, Indonesia
[6] Inst Teknol Bandung, U CoE AI VLB, Bandung, Indonesia
[7] Inst Teknol Bandung, Fac Civil & Environm Engn, Air & Waste Management Res Grp, Bandung, Indonesia
[8] Inst Teknol Bandung, Sch Architecture Planning & Policy Dev, Reg & Rural Planning Res Grp, Bandung, Indonesia
来源
PLOS ONE | 2023年 / 18卷 / 10期
关键词
SKY BRIGHTNESS; SELECTION; MODEL; GIS;
D O I
10.1371/journal.pone.0293190
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Astronomical observatory construction plays an essential role in astronomy research, education, and tourism development worldwide. This study develops siting distribution scenarios for astronomical observatory locations in Indonesia using a suitability analysis by integrating the physical and atmospheric observatory suitability indexes, machine learning models, and long-term climate models. Subsequently, potential sites are equalized based on longitude and latitude zonal divisions considering air pollution disturbance risks. The study novelty comes from the integrated model development of physical and socio-economic factors, dynamic spatiotemporal analysis of atmospheric factors, and the consideration of equitable low air-pollution-disturbance-risk distribution in optimal country-level observatory construction scenarios. Generally, Indonesia comprises high suitability index and low multi-source air pollution risk areas, although some area has high astronomical suitability and high-medium air pollution risk. Most of Java, the east coast of Sumatra, and the west and south coasts of Kalimantan demonstrate "low astronomical suitability-high air pollution risk." A total of eighteen locations are recommended for new observatories, of which five, one, three, four, two, and three are on Sumatra, Java, Kalimantan, Nusa Tenggara, Sulawesi, and Papua, respectively. This study provides a comprehensive approach to determine the optimal observatory construction site to optimize the potential of astronomical activities.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Reinforcement Learning-Based Genetic Algorithm in Optimizing Multidimensional Data Discretization Scheme
    Chen, Qiong
    Huang, Mengxing
    Xu, Qiannan
    Wang, Hao
    Wang, Jinghui
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [32] Risk-Based Data Validation in Machine Learning-Based Software Systems
    Foidl, Harald
    Felderer, Michael
    PROCEEDINGS OF THE 3RD ACM SIGSOFT INTERNATIONAL WORKSHOP ON MACHINE LEARNING TECHNIQUES FOR SOFTWARE QUALITY EVALUATION (MALTESQUE '19), 2019, : 13 - 18
  • [33] MACHINE LEARNING-BASED ECONOMIC DEVELOPMENT MAPPING FROM MULTI-SOURCE OPEN GEOSPATIAL DATA
    Cao, Rui
    Tu, Wei
    Cai, Jixuan
    Zhao, Tianhong
    Xiao, Jie
    Cao, Jinzhou
    Gao, Qili
    Su, Hanjing
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION IV, 2022, 5-4 : 259 - 266
  • [34] Machine Learning-Based Wave Model With High Spatial Resolution in Chesapeake Bay
    Shen, Jian
    Wang, Zhengui
    Du, Jiabi
    Zhang, Yinglong J.
    Qin, Qubin
    EARTH AND SPACE SCIENCE, 2024, 11 (03)
  • [35] A Machine Learning Technique to Classify LSST Observed Astronomical Objects Based on Photometric Data
    Khan, Asad Mansoor
    Akram, Muhammad Usman
    Khawaja, Sajid Gul
    Khan, Ali Saeed
    2019 6TH SWISS CONFERENCE ON DATA SCIENCE (SDS), 2019, : 46 - 50
  • [36] A machine learning-based framework for data mining and optimization of a production system
    Koulinas, Georgios
    Paraschos, Panagiotis
    Koulouriotis, Dimitrios
    FAIM 2021, 2021, 55 : 431 - 438
  • [37] Machine Learning-Based Forecasting of Metocean Data for Offshore Engineering Applications
    Barooni, Mohammad
    Ghaderpour Taleghani, Shiva
    Bahrami, Masoumeh
    Sedigh, Parviz
    Velioglu Sogut, Deniz
    ATMOSPHERE, 2024, 15 (06)
  • [38] Machine learning-based sensitivity of steel frames with highly imbalanced and data
    Koh, Hyeyoung
    Blum, Hannah B.
    ENGINEERING STRUCTURES, 2022, 259
  • [39] Machine Learning-Based Smart Home Data Analysis and Forecasting Method
    Park, Sanguk
    2023 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, ICCE, 2023,
  • [40] MACHINE LEARNING-BASED EXPLOITATION OF CROWDSOURCED GNSS DATA FOR ATMOSPHERIC STUDIES
    Soja, Benedikt
    Klopotek, Grzegorz
    Pan, Yuanxin
    Crocetti, Laura
    Mao, Shuyin
    Awadaljeed, Mudathir
    Rothacher, Markus
    See, Linda
    Sturn, Tobias
    Weinacker, Rudi
    McCallum, Ian
    Navarro, Vicente
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 1170 - 1173