Machine learning-based spatial data development for optimizing astronomical observatory sites in Indonesia

被引:4
|
作者
Sakti, Anjar Dimara [1 ]
Zakiar, Muhammad Rizky [2 ]
Santoso, Cokro [2 ]
Windasari, Nila Armelia [3 ]
Jaelani, Anton Timur [4 ,5 ,6 ]
Damayanti, Seny [7 ]
Anggraini, Tania Septi [1 ,2 ]
Putri, Anissa Dicky [2 ]
Hudalah, Delik [8 ]
Deliar, Albertus [1 ]
机构
[1] Inst Teknol Bandung, Fac Earth Sci & Technol, Remote Sensing & Geog Informat Sci Res Grp, Bandung, Indonesia
[2] Inst Teknol Bandung, Ctr Remote Sensing, Bandung, Indonesia
[3] Inst Teknol Bandung, Sch Business & Management, Business Strategy & Mkt Res Grp, Bandung, Indonesia
[4] Inst Teknol Bandung, Fac Math & Nat Sci, Astron Res Grp, Bandung, Indonesia
[5] Inst Teknol Bandung, Fac Math & Nat Sci, Bosscha Observ, Bandung, Indonesia
[6] Inst Teknol Bandung, U CoE AI VLB, Bandung, Indonesia
[7] Inst Teknol Bandung, Fac Civil & Environm Engn, Air & Waste Management Res Grp, Bandung, Indonesia
[8] Inst Teknol Bandung, Sch Architecture Planning & Policy Dev, Reg & Rural Planning Res Grp, Bandung, Indonesia
来源
PLOS ONE | 2023年 / 18卷 / 10期
关键词
SKY BRIGHTNESS; SELECTION; MODEL; GIS;
D O I
10.1371/journal.pone.0293190
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Astronomical observatory construction plays an essential role in astronomy research, education, and tourism development worldwide. This study develops siting distribution scenarios for astronomical observatory locations in Indonesia using a suitability analysis by integrating the physical and atmospheric observatory suitability indexes, machine learning models, and long-term climate models. Subsequently, potential sites are equalized based on longitude and latitude zonal divisions considering air pollution disturbance risks. The study novelty comes from the integrated model development of physical and socio-economic factors, dynamic spatiotemporal analysis of atmospheric factors, and the consideration of equitable low air-pollution-disturbance-risk distribution in optimal country-level observatory construction scenarios. Generally, Indonesia comprises high suitability index and low multi-source air pollution risk areas, although some area has high astronomical suitability and high-medium air pollution risk. Most of Java, the east coast of Sumatra, and the west and south coasts of Kalimantan demonstrate "low astronomical suitability-high air pollution risk." A total of eighteen locations are recommended for new observatories, of which five, one, three, four, two, and three are on Sumatra, Java, Kalimantan, Nusa Tenggara, Sulawesi, and Papua, respectively. This study provides a comprehensive approach to determine the optimal observatory construction site to optimize the potential of astronomical activities.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Optimizing diabetes classification with a machine learning-based framework
    Feng, Xin
    Cai, Yihuai
    Xin, Ruihao
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [2] Optimizing diabetes classification with a machine learning-based framework
    Xin Feng
    Yihuai Cai
    Ruihao Xin
    BMC Bioinformatics, 24
  • [3] An Evaluation of Machine Learning-Based Methods for Detection of Phishing Sites
    Miyamoto, Daisuke
    Hazeyama, Hiroaki
    Kadobayashi, Youki
    ADVANCES IN NEURO-INFORMATION PROCESSING, PT I, 2009, 5506 : 539 - 546
  • [4] Optimizing data-sampling period in a machine learning-based surrogate model for powder mixing simulations
    Kishida, Naoki
    Nakamura, Hideya
    Ohsaki, Shuji
    Watano, Satoru
    POWDER TECHNOLOGY, 2025, 452
  • [5] Machine Learning-Based Characterization and Identification of Tertiary Lymphoid Structures Using Spatial Transcriptomics Data
    Li, Songyun
    Wang, Zhuo
    Huang, Hsien-Da
    Lee, Tzong-Yi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (07)
  • [6] The data center construction of the Xinjiang Astronomical Observatory based on virtual observatory standards
    Zhang, H.
    Wang, J.
    Demleitner, M.
    Ye, X.
    Zhang, M.
    Zhang, Y.
    Wang, W.
    Li, J.
    Du, X.
    ASTRONOMY AND COMPUTING, 2022, 39
  • [7] Machine Learning-Based Sentiment Analysis of Twitter Data
    Karthiga, M.
    Kumar, Sathish G.
    Aravindhraj, N.
    Priyanka, S.
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATION ENGINEERING (ICACCE-2019), 2019,
  • [8] Machine Learning for Astronomical Big Data Processing
    Xu, Long
    Yan, Yihua
    2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2017,
  • [9] Machine Learning-Based Embedding for Discontinuous Time Series Machine Data
    Aremu, Oluseun Omotola
    Hyland-Wood, David
    McAree, Peter Ross
    2019 IEEE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2019, : 1321 - 1326
  • [10] Development of Machine Learning-Based Platform for Distillation Column
    Oh, Kwang Cheol
    Kwon, Hyukwon
    Roh, Jiwon
    Choi, Yeongryeol
    Park, Hyundo
    Cho, Hyungtae
    Kim, Junghwan
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2020, 58 (04): : 565 - 572