Fast and stable schemes for non-linear osmosis filtering

被引:2
|
作者
Calatroni, L. [1 ]
Morigi, S. [2 ]
Parisotto, S. [3 ]
Recupero, G. A. [2 ]
机构
[1] Univ Cote Azur, CNRS, Inria, Lab I3S, Sophia Antipolis, France
[2] Univ Bologna, Dept Math, Bologna, Italy
[3] Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB30WA, England
基金
欧盟地平线“2020”;
关键词
Osmosis filtering; Non-linear PDEs; Semi-implicit finite-difference schemes; Shadow removal; Light-spot removal; Compact data representation; SHADOW; REMOVAL;
D O I
10.1016/j.camwa.2022.12.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a non-linear variant of the transport-diffusion osmosis model for solving a variety of imaging problems such as shadow/soft-light removal and compact data representation. The non-linear behaviour is encoded in terms of a general scalar diffusivity function with suitable properties, which allows to balance the diffusion intensity over different regions of the image while preventing smoothing artefacts. For the proposed model, conservation properties (average intensity and non-negativity) are proved and a variational interpretation is showed for specific choices of the diffusivity function. Upon suitable spatial discretisation, both an explicit and a semi-implicit iterative schemes are considered, for which convergence conditions and unconditional stability results are proved, respectively. To validate the proposed modelling and the computational speed of the numerical schemes considered, we report several results and comparisons with state-of-the-art methods, showing that artefact-free and computationally efficient results are obtained in comparison to standard linear and anisotropic osmosis models.
引用
收藏
页码:30 / 47
页数:18
相关论文
共 50 条
  • [21] Linear and non-linear filtering in mathematical finance: a review
    Date, P.
    Ponomareva, K.
    IMA JOURNAL OF MANAGEMENT MATHEMATICS, 2011, 22 (03) : 195 - 211
  • [22] FILTERING EQUATIONS FOR INFINITE DIMENSIONAL NON-LINEAR FILTERING PROBLEMS
    MIYAHARA, Y
    LECTURE NOTES IN MATHEMATICS, 1983, 1033 : 240 - 246
  • [23] EVALUATION OF SOLUTION SCHEMES FOR NON-LINEAR STRUCTURES
    MONDKAR, DP
    POWELL, GH
    COMPUTERS & STRUCTURES, 1978, 9 (03) : 223 - 236
  • [24] Robust iterative schemes for non-linear poromechanics
    Borregales, Manuel
    Radu, Florin A.
    Kumar, Kundan
    Nordbotten, Jan M.
    COMPUTATIONAL GEOSCIENCES, 2018, 22 (04) : 1021 - 1038
  • [25] STABLE STATES OF A NON-LINEAR TRANSFORMATION
    METROPOL.N
    STEIN, ML
    STEIN, PR
    NUMERISCHE MATHEMATIK, 1967, 10 (01) : 1 - &
  • [26] 2 NUMERICAL SCHEMES FOR NON-LINEAR CONSOLIDATION
    SIRIWARDANE, HJ
    DESAI, CS
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1981, 17 (03) : 405 - 426
  • [27] On the Non-linear Stability of Flux Reconstruction Schemes
    Jameson, A.
    Vincent, P. E.
    Castonguay, P.
    JOURNAL OF SCIENTIFIC COMPUTING, 2012, 50 (02) : 434 - 445
  • [28] On the Non-linear Stability of Flux Reconstruction Schemes
    A. Jameson
    P. E. Vincent
    P. Castonguay
    Journal of Scientific Computing, 2012, 50 : 434 - 445
  • [29] Robust iterative schemes for non-linear poromechanics
    Manuel Borregales
    Florin A. Radu
    Kundan Kumar
    Jan M. Nordbotten
    Computational Geosciences, 2018, 22 : 1021 - 1038
  • [30] Robust non-linear filtering for video processing
    Zlokolica, V
    Philips, W
    Van De Ville, D
    DSP 2002: 14TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2, 2002, : 571 - 574