Robust iterative schemes for non-linear poromechanics

被引:34
|
作者
Borregales, Manuel [1 ]
Radu, Florin A. [1 ]
Kumar, Kundan [1 ]
Nordbotten, Jan M. [1 ,2 ]
机构
[1] Univ Bergen, Dept Math, Bergen, Norway
[2] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA
关键词
Biot's model; L-schemes; MFEM; Convergence analysis; Fixed-stress method; Coupled problems; Poromechanics; COUPLED FLOW; FIXED-STRESS; CONVERGENCE ANALYSIS; SEQUENTIAL-METHODS; GENERAL-THEORY; CONSOLIDATION; SIMULATION; STABILITY; DISCRETIZATIONS; GEOMECHANICS;
D O I
10.1007/s10596-018-9736-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider a non-linear extension of Biot's model for poromechanics, wherein both the fluid flow and mechanical deformation are allowed to be non-linear. Specifically, we study the case when the volumetric stress and the fluid density are non-linear functions satisfying certain assumptions. We perform an implicit discretization in time (backward Euler) and propose two iterative schemes for solving the non-linear problems appearing within each time step: a splitting algorithm extending the undrained split and fixed stress methods to non-linear problems, and a monolithic L-scheme. The convergence of both schemes are shown rigorously. Illustrative numerical examples are presented to confirm the applicability of the schemes and validate the theoretical results.
引用
收藏
页码:1021 / 1038
页数:18
相关论文
共 50 条
  • [1] Robust iterative schemes for non-linear poromechanics
    Manuel Borregales
    Florin A. Radu
    Kundan Kumar
    Jan M. Nordbotten
    Computational Geosciences, 2018, 22 : 1021 - 1038
  • [2] Iterative splitting schemes for a soft material poromechanics model
    Both, J. W.
    Barnafi, N. A.
    Radu, F. A.
    Zunino, P.
    Quarteroni, A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 388
  • [3] Optimal non-linear robust control for non-linear uncertain systems
    Haddad, WM
    Chellaboina, V
    Fausz, JL
    Leonessa, A
    INTERNATIONAL JOURNAL OF CONTROL, 2000, 73 (04) : 329 - 342
  • [4] Gradient schemes for linear and non-linear elasticity equations
    Droniou, Jerome
    Lamichhane, Bishnu P.
    NUMERISCHE MATHEMATIK, 2015, 129 (02) : 251 - 277
  • [5] Gradient schemes for linear and non-linear elasticity equations
    Jérôme Droniou
    Bishnu P. Lamichhane
    Numerische Mathematik, 2015, 129 : 251 - 277
  • [6] Robust adaptive control of uncertain non-linear systems with non-linear parameterisation
    Liu, Yusheng
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2006, 1 (02) : 151 - 156
  • [7] ITERATIVE REGULARIZING ALGORITHMS FOR NON-LINEAR PROBLEMS
    BAKUSHINSKII, AB
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1987, 27 (3-4): : 196 - 199
  • [8] New iterative methods for non-linear equations
    Li Tai-fang
    Li De-sheng
    Xu Zhao-di
    Fang Ya-ling
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (02) : 755 - 759
  • [9] ITERATIVE ANALYSIS OF NON-LINEAR GLASS PLATES
    VALLABHAN, CVG
    JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 1983, 109 (02): : 489 - 502