Multi-Scale Rolling Bearing Fault Diagnosis Method Based on Transfer Learning

被引:3
|
作者
Yin, Zhenyu [1 ,2 ,3 ]
Zhang, Feiqing [1 ,2 ,3 ]
Xu, Guangyuan [1 ,2 ,3 ]
Han, Guangjie [4 ]
Bi, Yuanguo [5 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Comp Technol, Shenyang 110168, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Liaoning Key Lab Domest Ind Control Platform Techn, Shenyang 110168, Peoples R China
[4] Hohai Univ, Dept Internet Things Engn, Changzhou 213022, Peoples R China
[5] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110167, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 03期
关键词
fault diagnosis; transfer learning; dynamic convolution; loss function;
D O I
10.3390/app14031198
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Confronting the challenge of identifying unknown fault types in rolling bearing fault diagnosis, this study introduces a multi-scale bearing fault diagnosis method based on transfer learning. Initially, a multi-scale feature extraction network, MBDCNet, is constructed. This network, by integrating the features of vibration signals at multiple scales, is dedicated to capturing key information within bearing vibration signals. Innovatively, this study replaces traditional convolution with dynamic convolution in MBDCNet, aiming to enhance the model's flexibility and adaptability. Furthermore, the study implements pre-training and transfer learning strategies to maximally extract latent knowledge from source domain data. By optimizing the loss function and fine-tuning the learning rate, the robustness and generalization ability of the model in the target domain are significantly improved. The proposed method is validated on bearing datasets provided by Case Western Reserve University and Jiangnan University. The experimental results demonstrate high accuracy in most diagnostic tasks, achieving optimal average accuracy on both datasets, thus verifying the stability and robustness of our approach in various diagnostic tasks. This offers a reliable research direction in terms of enhancing the reliability of industrial equipment, especially in the field of bearing fault diagnosis.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Enhanced transfer learning method for rolling bearing fault diagnosis based on linear superposition network
    Huo, Chunran
    Jiang, Quansheng
    Shen, Yehu
    Zhu, Qixin
    Zhang, Qingkui
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 121
  • [42] A rolling bearing fault diagnosis method based on deep attention transfer learning at different rotations
    Chen R.
    Tang L.
    Hu X.
    Yang L.
    Zhao L.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (12): : 95 - 101and195
  • [43] A novel transfer learning fault diagnosis method for rolling bearing based on feature correlation matching
    Wang, Bo
    Wang, Baoqiang
    Ning, Yi
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (12)
  • [44] TRANSFER LEARNING ROLLING BEARING FAULT DIAGNOSIS METHOD BASED ON DEEP DOMAIN ADAPTIVE NETWORK
    Liao, Yu
    Geng, Jiahao
    Guo, Li
    Geng, Bing
    Cui, Kun
    Li, Runze
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2025, 21 (01): : 209 - 225
  • [45] Fault diagnosis of wind bearing based on multi-scale wavelet kernel extreme learning machine
    Zhu, Siwen
    Jiao, Bin
    2ND ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND ARTIFICIAL INTELLIGENCE (ISAI2017), 2017, 887
  • [46] Bearing Fault Diagnosis Based on Multi-Scale CNN and Bidirectional GRU
    Saghi, Taher
    Bustan, Danyal
    Aphale, Sumeet S.
    VIBRATION, 2023, 6 (01): : 11 - 28
  • [47] BEARING FAULT DIAGNOSIS BASED ON MULTI-SCALE POSSIBILISTIC CLUSTERING ALGORITHM
    Hu, Ya-Ting
    Qu, Fu-Heng
    Wen, Chang-Ji
    2016 13TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2016, : 354 - 357
  • [48] Rolling bearing fault diagnosis with multi-scale multi-task attention convolutional neural network
    Wang, Zhaowei
    Liu, Chuanshuai
    Zhao, Wenxiang
    Song, Xiangjin
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2024, 28 (07): : 65 - 76
  • [49] Multi-scale Feature Learning Network for Bearing fault Diagnosis with Information Fusion
    Luo, Shuyang
    Zhou, Qi
    2024 10TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTIC, ICCAR 2024, 2024, : 191 - 196
  • [50] Railway rolling bearing fault diagnosis based on multi-scale intrinsic mode function permutation entropy and extreme learning machine classifier
    Yao, Dechen
    Yang, Jianwei
    Bai, Yongliang
    Cheng, Xiaoqing
    ADVANCES IN MECHANICAL ENGINEERING, 2016, 8 (10): : 1 - 9