Multi-Scale Rolling Bearing Fault Diagnosis Method Based on Transfer Learning

被引:3
|
作者
Yin, Zhenyu [1 ,2 ,3 ]
Zhang, Feiqing [1 ,2 ,3 ]
Xu, Guangyuan [1 ,2 ,3 ]
Han, Guangjie [4 ]
Bi, Yuanguo [5 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Comp Technol, Shenyang 110168, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Liaoning Key Lab Domest Ind Control Platform Techn, Shenyang 110168, Peoples R China
[4] Hohai Univ, Dept Internet Things Engn, Changzhou 213022, Peoples R China
[5] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110167, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 03期
关键词
fault diagnosis; transfer learning; dynamic convolution; loss function;
D O I
10.3390/app14031198
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Confronting the challenge of identifying unknown fault types in rolling bearing fault diagnosis, this study introduces a multi-scale bearing fault diagnosis method based on transfer learning. Initially, a multi-scale feature extraction network, MBDCNet, is constructed. This network, by integrating the features of vibration signals at multiple scales, is dedicated to capturing key information within bearing vibration signals. Innovatively, this study replaces traditional convolution with dynamic convolution in MBDCNet, aiming to enhance the model's flexibility and adaptability. Furthermore, the study implements pre-training and transfer learning strategies to maximally extract latent knowledge from source domain data. By optimizing the loss function and fine-tuning the learning rate, the robustness and generalization ability of the model in the target domain are significantly improved. The proposed method is validated on bearing datasets provided by Case Western Reserve University and Jiangnan University. The experimental results demonstrate high accuracy in most diagnostic tasks, achieving optimal average accuracy on both datasets, thus verifying the stability and robustness of our approach in various diagnostic tasks. This offers a reliable research direction in terms of enhancing the reliability of industrial equipment, especially in the field of bearing fault diagnosis.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] A rolling bearing fault diagnosis method based on multi-scale knowledge distillation and continual learning
    Xia, Yifei
    Gao, Jun
    Shao, Xing
    Wang, Cuixiang
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (12): : 276 - 285
  • [2] Rolling Bearing Fault Diagnosis based on Multi-scale Entropy Feature and Ensemble Learning
    Zhang, Mei
    Wang, Zhihui
    Zhang, Jie
    MANUFACTURING TECHNOLOGY, 2024, 24 (03): : 492 - 506
  • [3] Fault diagnosis of rolling bearing based on multi-scale and attention mechanism
    Ding, Xue
    Deng, Aidong
    Li, Jing
    Deng, Minqiang
    Xu, Shuo
    Shi, Yaowei
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2022, 52 (01): : 172 - 178
  • [4] Multi-Scale CNN based on Attention Mechanism for Rolling Bearing Fault Diagnosis
    Hao, Yijia
    Wang, Huan
    Liu, Zhiliang
    Han, Haoran
    2020 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ADVANCED RELIABILITY AND MAINTENANCE MODELING (APARM), 2020,
  • [5] Fault Diagnosis Method of Special Vehicle Bearing Based on Multi-Scale Feature Fusion and Transfer Adversarial Learning
    Xiao, Zhiguo
    Li, Dongni
    Yang, Chunguang
    Chen, Wei
    SENSORS, 2024, 24 (16)
  • [6] Fault diagnosis method of rolling bearing based on dual-path parallel multi-scale ResNet method
    Zhao X.
    Zhang Y.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (03): : 199 - 208
  • [7] Multi-scale bidirectional transformer network for rolling bearing fault diagnosis
    Ruiru Qiang
    Xiaoqiang Zhao
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2025, 47 (5)
  • [8] A Rolling Bearing Fault Diagnosis Method Based on EEMD-WSST Signal Reconstruction and Multi-Scale Entropy
    Ge, Jianghua
    Niu, Tianyu
    Xu, Di
    Yin, Guibin
    Wang, Yaping
    ENTROPY, 2020, 22 (03)
  • [9] Multi-scale deep intra-class transfer learning for bearing fault diagnosis
    Wang, Xu
    Shen, Changqing
    Xia, Min
    Wang, Dong
    Zhu, Jun
    Zhu, Zhongkui
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2020, 202
  • [10] A Feature Extraction Method Using Improved Multi-Scale Entropy for Rolling Bearing Fault Diagnosis
    Ju, Bin
    Zhang, Haijiao
    Liu, Yongbin
    Liu, Fang
    Lu, Siliang
    Dai, Zhijia
    ENTROPY, 2018, 20 (04):