Asynchronous measurement-device-independent quantum key distribution with hybrid source

被引:5
|
作者
Bai, Jun-Lin [1 ,2 ]
Xie, Yuan-Mei [1 ,2 ]
Fu, Yao [3 ,4 ]
Yin, Hua-Lei [1 ,2 ]
Chen, Zeng-Bing [1 ,2 ]
机构
[1] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Sch Phys, Nanjing 210093, Peoples R China
[3] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1364/OL.491511
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The linear constraint of secret key rate capacity is overcome by the twin-field quantum key distribution (QKD). However, the complex phase-locking and phase-tracking technique requirements throttle the real-life applications of the twin-field protocol. The asynchronous measurement-device-independent (AMDI) QKD, also called the mode-pairing QKD, protocol can relax the technical requirements and keep the similar performance of the twin-field protocol. Here, we propose an AMDI-QKD protocol with a nonclassical light source by changing the phase-randomized weak coherent state to a phase-randomized coherent-state superposition in the signal state time window. Simulation results show that our proposed hybrid source protocol significantly enhances the key rate of the AMDI-QKD protocol, while exhibiting robustness to imperfect modulation of nonclassical light sources. (c) 2023 Optica Publishing Group
引用
收藏
页码:3551 / 3554
页数:4
相关论文
共 50 条
  • [21] Efficient passive measurement-device-independent quantum key distribution
    Zhang, Chun-Hui
    Zhang, Chun-Mei
    Wang, Qin
    PHYSICAL REVIEW A, 2019, 99 (05)
  • [22] Measurement-device-independent quantum key distribution with leaky sources
    Weilong Wang
    Kiyoshi Tamaki
    Marcos Curty
    Scientific Reports, 11
  • [23] Alternative schemes for measurement-device-independent quantum key distribution
    Ma, Xiongfeng
    Razavi, Mohsen
    PHYSICAL REVIEW A, 2012, 86 (06):
  • [24] Measurement-device-independent quantum key distribution for nonstandalone networks
    GUAN-JIE FAN-YUAN
    FENG-YU LU
    SHUANG WANG
    ZHEN-QIANG YIN
    DE-YONG HE
    ZHENG ZHOU
    JUN TENG
    WEI CHEN
    GUANG-CAN GUO
    ZHENG-FU HAN
    Photonics Research, 2021, 9 (10) : 1881 - 1891
  • [25] Fully passive measurement-device-independent quantum key distribution
    Li, Jinjie
    Wang, Wenyuan
    Lo, Hoi-Kwong
    PHYSICAL REVIEW APPLIED, 2024, 21 (06):
  • [26] Field Test of Measurement-Device-Independent Quantum Key Distribution
    Tang, Yan-Lin
    Yin, Hua-Lei
    Chen, Si-Jing
    Liu, Yang
    Zhang, Wei-Jun
    Jiang, Xiao
    Zhang, Lu
    Wang, Jian
    You, Li-Xing
    Guan, Jian-Yu
    Yang, Dong-Xu
    Wang, Zhen
    Liang, Hao
    Zhang, Zhen
    Zhou, Nan
    Ma, Xiongfeng
    Chen, Teng-Yun
    Zhang, Qiang
    Pan, Jian-Wei
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2015, 21 (03) : 116 - 122
  • [27] New scheme for measurement-device-independent quantum key distribution
    Lian Wang
    Yuan-Yuan Zhou
    Xue-Jun Zhou
    Xiao Chen
    Zheng Zhang
    Quantum Information Processing, 2018, 17
  • [28] Intensity correlations in measurement-device-independent quantum key distribution
    Liu, Junxuan
    Xing, Tianyi
    Liu, Ruiyin
    Chen, Zihao
    Tan, Hao
    Huang, Anqi
    OPTICS EXPRESS, 2024, 32 (22): : 38394 - 38406
  • [29] A measurement-device-independent quantum key distribution protocol with a heralded single photon source
    Zhou Y.-Y.
    Zhou X.-J.
    Su B.-B.
    Optoelectronics Letters, 2016, 12 (2) : 148 - 151
  • [30] Measurement-device-independent quantum key distribution via quantum blockade
    Yi-Heng Zhou
    Zong-Wen Yu
    Ao Li
    Xiao-Long Hu
    Cong Jiang
    Xiang-Bin Wang
    Scientific Reports, 8