Efficient passive measurement-device-independent quantum key distribution

被引:20
|
作者
Zhang, Chun-Hui [1 ,2 ,3 ]
Zhang, Chun-Mei [1 ,2 ,3 ]
Wang, Qin [1 ,2 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Inst Quantum Informat & Technol, Nanjing 210003, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Key Lab Minist Educ, Broadband Wireless Commun & Sensor Network Techno, Nanjing 210003, Jiangsu, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Telecommun & Networks Natl Engn Res Ctr, Nanjing 210003, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
CRYPTOGRAPHY; SECURITY; PROOF;
D O I
10.1103/PhysRevA.99.052325
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
To date, only active-decoy-state methods have been adopted in current measurement-device-independent (MDI) quantum key distribution (QKD) protocols, causing security loopholes when modulating multiple light intensities with practical devices. To solve this problem, the passive-decoy-state method will be a good choice. Until today practical passive-decoy-state MDI QKD is still missing. In this paper, based on a recently discussed structure of heralded single-photon sources, we propose a passive-decoy-state MDI QKD protocol. In present work, one does not need to modulate light sources into different intensities, but utilizes the built-in local detection events to passively generate different decoy states. Furthermore, through carrying out an appropriate mathematical method, we are able to give very precise estimations for single-photon-pair contributions. As a result, our protocol can exhibit distinct advantages compared with state-of-the-art MDI QKD schemes even when the finite-key-size effect is taken into account. Therefore, our protocol seems a promising candidate to enhance both the security and performance of MDI QKD in practical implementation.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Fully passive measurement-device-independent quantum key distribution
    Li, Jinjie
    Wang, Wenyuan
    Lo, Hoi-Kwong
    PHYSICAL REVIEW APPLIED, 2024, 21 (06):
  • [2] Measurement-Device-Independent Quantum Key Distribution
    S. P. Kulik
    S. N. Molotkov
    JETP Letters, 2023, 118 : 74 - 82
  • [3] Measurement-Device-Independent Quantum Key Distribution
    Lo, Hoi-Kwong
    Curty, Marcos
    Qi, Bing
    PHYSICAL REVIEW LETTERS, 2012, 108 (13)
  • [4] Measurement-Device-Independent Quantum Key Distribution
    Kulik, S. P.
    Molotkov, S. N.
    JETP LETTERS, 2023, 118 (01) : 74 - 82
  • [5] Key Expanding in Measurement-Device-Independent Quantum Key Distribution
    Georgi Bebrov
    International Journal of Theoretical Physics, 2021, 60 : 3566 - 3577
  • [6] Entanglement Measurement-Device-Independent Quantum Key Distribution
    Alshowkan, Muneer
    Elleithy, Khaled
    2017 IEEE LONG ISLAND SYSTEMS, APPLICATIONS AND TECHNOLOGY CONFERENCE (LISAT), 2017,
  • [7] Experimental Measurement-Device-Independent Quantum Key Distribution
    Liu, Yang
    Chen, Teng-Yun
    Wang, Liu-Jun
    Liang, Hao
    Shentu, Guo-Liang
    Wang, Jian
    Cui, Ke
    Yin, Hua-Lei
    Liu, Nai-Le
    Li, Li
    Ma, Xiongfeng
    Pelc, Jason S.
    Fejer, M. M.
    Peng, Cheng-Zhi
    Zhang, Qiang
    Pan, Jian-Wei
    PHYSICAL REVIEW LETTERS, 2013, 111 (13)
  • [8] Key Expanding in Measurement-Device-Independent Quantum Key Distribution
    Bebrov, Georgi
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (09) : 3566 - 3577
  • [9] Hacking measurement-device-independent quantum key distribution
    Lu, Feng-Yu
    Ye, Peng
    Wang, Ze-Hao
    Wang, Shuang
    Yin, Zhen-Qiang
    Wang, Rong
    Huang, Xiao-Jua
    Chen, Wei
    He, De-Yong
    Fan-Yuan, Guan-Je
    Guo, Guang-Can
    Han, Zheng-Fu
    OPTICA, 2023, 10 (04): : 520 - 527
  • [10] Measurement-device-independent quantum key distribution with quantum memories
    Abruzzo, Silvestre
    Kampermann, Hermann
    Bruss, Dagmar
    PHYSICAL REVIEW A, 2014, 89 (01)